113 "Прикладна математика"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/50024
Переглянути
1 результатів
Результати пошуку
Документ Розв'язання двомірних задач руйнування при повзучості на основі схеми МСЕ(Національний технічний університет "Харківський політехнічний інститут", 2020) Сенько, Альона ВолодимирівнаДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 113 "Прикладна математика". – Національний технічний університет "Харківський політехнічний інститут", Харків, 2020. Об’єкт дослідження – двовимірні елементи при повзучості, що обумовлена дією статичного та періодичного навантаження. Предмет дослідження – процеси повзучості, пошкоджуваності та руйнування, які відбуваються у тілах, розрахункові схеми яких відповідають двовимірним задачам. Перший розділ роботи містить огляд наукових публікацій за напрямом роботи. Розглянуто питання чисельного моделювання процесів накопичення прихованої пошкоджуваності та руйнування металевих деформівних тіл при повзучості. Проаналізовано основні підходи, що дозволяють виконувати формулювання кінетичних рівнянь для параметру пошкоджуваності, насамперед в умовах повзучості матеріалу. Надано стислий опис підходів механіки руйнування стосовно задач повзучості. Визначено, що базовим чисельним методом, що використовується при складному напруженому стані для аналізу повзучості, яка супроводжується накопиченням пошкоджуваності, наразі є метод скінченних елементів (МСЕ). Виконано огляд сучасних публікацій за темою, увагу приділено застосуванню алгоритмів МСЕ для розв’язання задач повного руйнування тіл складної геометрії, які деформуються в умовах повзучості: як на першому етапі накопичення прихованих пошкоджень, так й на другому – зростання та розвитку макродефектів (тріщин). На основі виконаних аналітичних досліджень наукових напрямів та підходів проведено формулювання задач досліджень, які потрібно розв’язати у роботі, намічено шляхи побудови методу розрахунку. Метод розв’язання двовимірної задачі руйнування при повзучості викладено у другому розділі дисертаційної роботи. Надано математичне формулювання задачі повзучості, пошкоджуваності та руйнування при двовимірному напруженому стані, яке проведено для випадку спільної дії статичних та циклічних навантажень. Описано застосування методу скінченних елементів та різницевого методу для розв’язання двовимірних задач повзучості, що супроводжується пошкоджуваністю. Увагу приділено формуванню скінченноелементного підходу до розв’язання задачі руйнування при повзучості. Описано основні етапи запропонованого методу розв’язання задачі розповсюдження макродефекту чи тріщини повзучості з урахуванням нестаціонарного характеру розподілу пошкоджуваності в їхньому околі. Сформульовано підхід до використання скінченноелементних розв’язків для отримання диференційного рівняння 1-го порядку для опису процесу розповсюдження тріщини. Описано результати з дослідження достовірності розв’язків, що отримуються при чисельному моделюванні руйнування при повзучості, надано результати порівняння чисельних та експериментальних результатів з повзучості та руйнування зразків з надрізами для верифікації методу розрахунку. Третій розділ присвячено опису результатів чисельного моделювання руйнування при повзучості у пластинах з надрізами та отворами при розтягу. Розглянуто плоский напружений стан. Проаналізовано чисельні дані, що отримано для пластини з гострими надрізами, виготовленої з жароміцного нікелевого сплаву. Встановлено вплив навантаження на перебіг процесу розвитку тріщини повзучості. Надано результати розв’язання аналогічної задачі руйнування пластини з коловими надрізами. Описано підхід до проведеного моделювання. Показано можливість виникнення двох тріщин в околі первісно зародженого макродефекту. Проведено чисельне моделювання руйнування при повзучості пластини з центральним коловим отвором. Визначено вплив неоднорідного температурного поля на параметри процесу накопичення пошкоджень та руйнування. Розглянуто чисельні дані, що отримано при моделюванні руйнування пластини з двома отворами. Четвертий розділ присвячено розрахунковим дослідженням руйнування стрижневого твелу ядерного реактору. Отримано матеріальні константи, що входять до рівнянь стану повзучості та пошкоджуваності оксиду урану. Розроблено підхід до моделювання циклічної дії згинних напружень. Виконано розрахунки пошкоджуваності та руйнування твелу при плоскій деформації. Змістом п’ятого розділу є формулювання та розв’язання диференційних рівнянь для опису руху тріщини при повзучості. На базі розробленого підходу, що вимагає проведення попереднього скінченноелементного моделювання , визначено параметри, що входять до диференційного рівняння руху тріщини. Розглянуто випадок тріщин у зразках з гострими надрізами. Побудовано рівняння для моделювання руху тріщини у пластині з центральним отвором.