Вісник № 1-2. Математичне моделювання в техніці та технологіях
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/55966
Переглянути
Документ Про апроксимації періодичних Ateb-функцій(Національний технічний університет "Харківський політехнічний інститут", 2021) Ольшанський, Василь Павлович; Ольшанський, Станіслав ВасильовичЗапропоновано два варіанти апроксимаційних формул для періодичних Ateb-синуса і Ateb-косинуса в першій чверті їх періоду. Перший варіант – це наближення типу Паде, які одержано ітераційним способом при побудові аналітичного розвʼязку відповідного інтегрального рівняння зі згортанням степеневого ряду в замкнену суму за формулою Шенкса. Розглянуто два ітераційних наближення. Перше більш компактне, але має гіршу точність, що понижується із збільшенням значення аргументу. Щоб усунути цей недолік, додатково запропоновано гібридну апроксимацію, де обчислення значень Ateb-функцій на початку (для косинуса) і в кінці (для синуса) чверті їх періоду має проводитись за окремою формулою, що була одержана раніше асимптотичнимметодом. Порівняльний аналіз наближених і точних значень спеціальних функцій показав, що похибка запропонованих апроксимацій єменшою за один відсоток. Другий варіант наближення – це заміна періодичних Ateb-функцій тригонометричними функціями окремих аргументів, вибраних так, щоб значення спеціальних функцій були точними в деяких точках чверті періоду. В роботі виділено пʼять таких точок колокації. Для реалізації цього варіанту апроксимації складено окрему таблицю значень періодичних Ateb-функцій в точках колокації. Наведено приклади розрахунків, де показано, що і другий варіант апроксимації дає гарну точність наближеного обчислення значень спеціальних функцій.