Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ Застосування статистичних мір релевантності для векторних структурних описів об'єктів у задачі класифікації зображень(Полтавський національний технічний університет імені Юрія Кондратюка, 2018) Гадецька, Світлана Вікторівна; Гороховатський, Володимир ОлексійовичВирішується задача класифікації зображень у просторі ознак дескрипторів особливих точок з поданням опису у кластерному виді і використанням статистичних мір для обчислення релевантності описів. Проведено аналіз особливостей застосування статистичного та метричного класифікаторів при визначенні рівня релевантності структурних описів. Виконано порівняння характеристик мір релевантності на розрахункових прикладах. Запропоновано використання розходження Кульбака-Лейблера як універсальної і ефективної міри для задачі класифікації. Підтверджена результативність запропонованого підходу для прикладних баз зображень. Наукова новизна дослідження полягає у розвиненні методу структурного розпізнавання зображень на основі кластерного опису множини дескрипторів особливих точок шляхом застосування апарату статистичних мір для визначення релевантності аналізованих та еталонних даних і побудови класифікаційних висновків у просторі кластер – еталон. Практична значущість роботи – отримання прикладних розрахункових моделей для застосування методів класифікації і підтвердження їх результативності в конкретних прикладах базах зображень.Документ Дослідження результативності класифікаторів зображень за статистичними розподілами для компонентів структурного опису(Національний технічний університет "Харківський політехнічний інститут", 2021) Гороховатський, Володимир Олексійович; Гадецька, Світлана Вікторівна; Жадан, Олексій Віталійович; Хвостенко, Олександр ОлександровичПредметом досліджень є моделі для побудови класифікаторів зображень у просторі описів як множини дескрипторів ключових точок при розпізнаванні візуальних об’єктів у системах комп’ютерного зору. Метою є створення та вивчення властивостей класифікатора зображень на підґрунті побудови ансамблю розподілів для компонентів структурного опису із використанням різноманітних моделей прийняття класифікаційних рішень, що забезпечує результативну класифікацію. Завдання: побудова моделей класифікації у синтезованому просторі образів ймовірнісних розподілів, аналіз параметрів, що впливають на їх ефективність, експериментальне оцінювання результативності класифікаторів засобами програмного моделювання за наслідками оброблення експериментальної бази зображень. Застосованими методами є: детектор ORB для формування дескрипторів ключових точок, інтелектуальний аналіз даних, математична статистика, засоби визначення релевантності для множин векторів даних, програмне моделювання. Отримані результати: Розроблений метод класифікації підтверджує свою працездатність та ефективність для класифікації зображень. Результативність методу може бути посилена введенням різноманіття видів метрик та мір подібності між центрами та дескрипторами, вибором способу формування центрів для еталонних описів, введенням логічного оброблення та стиснення структурного опису. Найкращі результати класифікації показала модель з використанням найбільш вагомого класу за вектором розподілів для кожного дескриптора, що відповідає параметру моди. Використання концентрованої частки даних опису дає можливість покращити його розрізнення з іншими описами. Застосування медіани як центру опису має перевагу над середнім значенням. Висновки. Наукова новизна – розроблення ефективного методу класифікації зображень на основі впровадження системи ймовірнісних розподілів для компонентів даних, що сприяє поглибленому аналізу у просторі даних та підвищує результативність класифікації. Класифікатор реалізовано у варіантах зіставлення інтегрального подання розподілів за класами і на підставі аналізу моди для розподілів окремих компонент. Практична значущість роботи – побудова моделей класифікації у видозміненому просторі даних, підтвердження працездатності запропонованих модифікацій аналізу даних на прикладах зображень, розроблення програмних моделей для впровадження запропонованих методів класифікації у системах комп’ютерного зору.