Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Алгоритм построения разделяющей поверхности двух точечных множеств методом разбиения пространства на регулярную сетку
    (Таврійський державний агротехнологічний університет, 2018) Дашкевич, Андрей Александрович
    В работе рассмотрен подход к решению задачи классификации данных двух точечных множеств на основе построения их разделяющей поверхности. Предлагается понятие гиперкуба, как расширение метода пространственного хеширования. Обобщенный подход к построению разделяющей поверхности двух точечных множеств заключается в разбиении пространства, занимаемого множествами на регулярную сетку с помощью метода пространственного хеширования, построения гиперкуба для полученной сетки и нахождения значений в ячейках гиперкуба методом проведения дискретизированных гиперпрямых для нахождения средней ячейки гиперкуба между двумя ячейками, принадлежащими разным классам. Наиболее вероятный класс для новых точек определяется знаком и модулем значения в той ячейке гиперкуба, в которой находится эта точка. Преимуществом предложенного подхода является простота вычислений и возможность расширения для данных произвольной размерности.
  • Ескіз
    Документ
    Снижение размерности данных на основе разбиения пространства на регулярную сетку
    (НТУ "ХПІ", 2018) Дашкевич, Андрей Александрович
    Предлагается подход к решению задачи классификации точечных множеств на основе снижения размерности данных и разбиения пространства на регулярную сетку. Вводится понятие гиперкуба как способ представления точечных множеств. Предложен подход к снижению размерности на основе сигнатуры точечного множества. Разработанный метод даёт возможность исключить из дальнейшей классификации множество координатных осей при повышении точности классификации и уменьшении количества необходимых вычислений. Проведённые эксперименты показали работоспособность подхода на данных больших размерностей. Преимуществом подхода является быстрое определение избыточных координатных осей для произвольного набора исходных классов.