Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
3 результатів
Результати пошуку
Документ Методичні вказівки до проведення тестового контролю знань з вищої математики за темою "Похідна та її застосування"(Національний технічний університет "Харківський політехнічний інститут", 2024) Католик, Ірина МирославівнаПредставлені методичні вказівки є продовженням серії методичних видань, започаткованої на кафедрі вищої математики НТУ «ХПІ» для тестування студентів з різних розділів курсу математики. Ці методичні вказівки включають тестові завдання з теми «Диференціювання функції однієї змінної», що є однією з найважливіших тем курсу математичного аналізу і складається з розділів «Техніка диференціювання» та «Застосування похідної». Для успішного засвоєння цієї теми студенти мають бути ознайомлені з поняттям похідної функції, таблицею похідних та правилами диференціювання, геометричним змістом похідної та застосуванням її для аналізу поведінки функції, побудови її графіка тощо. Від них вимагається також вміння знаходити похідну функції у випадках, коли вона задана параметрично або неявно та коли потрібно застосувати метод логарифмічного диференціювання. Перевірці наявності таких навичок та умінь присвячені запропоновані 20 варіантів тестових завдань, кожний з яких складається з 10 питань. Видання адресоване викладачам вищої математики НТУ «ХПІ», а також може бути використане для самостійної роботи студентів при підготовці до захисту РГЗ, контрольної роботи, колоквіуму, іспиту тощо.Документ Методичні вказівки для самостійної роботи над розділом "Диференціальне числення функції однієї змінної"(Національний технічний університет "Харківський політехнічний інститут", 2024) Католик, Ірина Мирославівна; Олексенко, Вячеслав МихайловичВища математика – фундаментальна дисципліна, яка сприяє підготовці висококваліфікованих фахівців інженерних спеціальностей. Сьогодення вимагає підвищення уваги до самостійної роботи студентів. Тому ця праця покликана допомогти студентам оволодіти запропонованим матеріалом самостійно. На основі наукових досягнень наглядно і доступно викладено основи диференціального числення функції однієї змінної в процесі розв’язання задач. Така форма викладення навчального матеріалу найбільш зручна для засвоєння методів розв’язування задач. З метою самостійно навчитися диференціювати функції та систематизувати свої математичні знання детально розв’язано понад сорок задач. Запропоновані таблиці похідних та диференціалів функцій бажано знати, що значно допоможе при розв’язуванні задач з вищої математики як за вказаною темою, так і при вивченні деяких інших розділів вищої математики в майбутньому. Методичні вказівки створено за програмою підготовки бакалаврів в технічних університетах для студентів спеціальності 101 – «Технології захисту довкілля». Автор висловлює щиру вдячність професору кафедри вищої математики Першиній Юлії Ігорівні за вдумливе рецензування.Документ Методичні вказівки до проведення тестового контролю знань з вищої математики за темою "Інтеграли"(2019) Католик, Ірина МирославівнаПредставлені методичні вказівки є продовженням серії методичних видань, започаткованої на кафедрі вищої математики НТУ «ХПІ» для тестування студентів з різних розділів курсу математики. Ці методичні вказівки включають тестові завдання з теми «Інтеграли», яка є однією з фундаментальних тем курсу математичного аналізу для технічних вишів і складається з розділів «Невизначений інтеграл» та «Визначений інтеграл і його застосування». Для успішного засвоєння цієї теми студенти мають бути ознайомлені з поняттями первісної функції, з таблицею інтегралів та їх властивостями, з основними методами інтегрування, формулою Ньютона-Лейбниця та застосуванням інтегралів для розв’язання геометричних задач, пов’язаних із знаходженням площі плоских фігур, об’ємів тіл обертання та довжини дуги кривої лінії, а також вміти розпізнавати невласні інтеграли першого та другого роду і досліджувати їх на збіжність. Саме перевірці наявності таких навичок та умінь присвячені запропоновані 20 варіантів тестових завдань, кожний з яких складається з 10 питань. Видання адресоване викладачам вищої математики НТУ «ХПІ», а також може бути використане для самостійної роботи студентів при підготовці до захисту РГЗ, контрольної роботи, колоквіуму, екзамену, тощо.