Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ Определение меры пиковости пульсирующего трафика(Інститут проблем моделювання в енергетиці НАН України, 2003) Кучук, Георгий АнатольевичОпределенные вычислительные сложности возникают при расчете меры пиковости реального пульсирующего трафика традиционными методами, поэтому целью данной статьи является описание подхода к решению данного вопроса с минимально возможными вычислительными затратами. затратамиДокумент Построение системы поддержки принятия решений на основе нечетких данных(Національний технічний університет "Харківський політехнічний інститут", 2020) Левашенко, Виталий Григорьевич; Ляшенко, Алексей Сергеевич; Кучук, Георгий АнатольевичРазработка инструментария оценки принимаемых решений является актуальной и востребованной задачей на современном этапе развития информационных технологий. Таким инструментарием являются, например, системы поддержки принятия решений (СППР). В работе предлагается математический аппарат построения СППР. Построение СППР предполагает анализ имеющихся результатов наблюдений или измерений и выработкустратегии проверок исходных параметров в виде дерева нечетких решений или продукционных правил. Основу предлагаемого аппарата составляют суммарные информационные оценки (информация и энтропия) для нечетких наборов данных. Использование нечетких данных наиболее полно соответствует человеческой природе, поскольку на практике люди часто применяют субъективные ощущения и априорные знания, чем точные вероятностные критерии. Поэтому, используя нечеткую логику и рассматривая степень возможности как нечеткую меру, эксперты имеют возможность описывать реальные данные с достаточной точностью. Исследована взаимосвязь предложенных суммарных информационных оценок. В работе приведены примеры, демонстрирующие использование предлагаемого математического аппарата на практической задаче. В дальнейшей работе, авторы планируют привести результаты экспериментальных исследований предлагаемого подхода и его сопоставление с иными известными методами и алгоритмами. Указанное сопоставление представляется для широкого круга формализованных данных, хранящихся в известном репозитории UCI Machine Learning Repository. В качестве сопоставляемых методов и алгоритмов планируется выбрать иные алгоритмы построения деревьев нечетких решений, алгоритмы Байесовской классификации, построения деревьев решений C4.5, CART и метод ближайших соседей.