Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
3 результатів
Результати пошуку
Документ Теоретичні основи електротехніки(2023) Казаковцева, Людмила Вікторівна; Костюков, Іван Олександрович; Кропачек, Ольга Юріївна; Лавріненко, Ольга Валеріївна; Литвиненко, Світлана АнатоліївнаПослідовно наведені 20 блоків по 5 задач з відповідями для самостійного розв’язання під час підготовки до першого етапу Всеукраїнської студентської олімпіади з дисципліни «Теоретичні основи електротехніки». У посібнику стисло поданий необхідний теоретичний матеріал, що охоплює теми «Електричні кола постійного струму», «Електричні кола змінного струму», «Трифазні електричні кола». Для студентів електротехнічних спеціальностей.Документ Статистичне моделювання просування блискавки в напрямку наземних об’єктів(Національний технічний університет "Харківський політехнічний інститут", 2020) Литвиненко, Світлана АнатоліївнаЗапропоновано огляд методів фізичного та математичного моделювання процесу просування лідера блискавки з метою порівняння ефективності їхнього застосування при обранні засобу блискавкозахисту наземного об’єкта: дослідження фізичних процесів з використанням тригерної блискавки, запущеної ракетою, моделювання з використанням електро-геометричних методів та фрактальних моделей, та ін. Докладно розглянуте статистичне моделювання, яке описує процес просування лідера блискавки на останній фазі в напрямку наземного об’єкта, з урахуванням стохастичного характеру просування лідера на попередньому етапі. За використання статистичного моделювання є можливим обчислення часу просування низхідного лідера блискавки з висоти, на якій відбувається орієнтування на об’єкт, з урахуванням можливості виникнення від об’єкту зустрічного лідера протилежної полярності. Обчислений масив часу просування каналу лідера від кожної точки грозової хмари використаний при обчисленні ймовірності прикріплення низхідного лідера до наземного об’єкта за використання критерію «найбільший час-найменша ймовірність». Моделювання виконується з використанням систематизованих експериментальних даних, отриманих при численних дослідженнях тих електрофізичних процесів, які визначають напрямок просування лідерного каналу блискавки та визначають момент та місце в просторі початку орієнтування лідера на об’єкт: розподіл напруженості електричного поля навколо верхівки лідера та у повітряному проміжку, струм зворотного удару, рівень потенціалу верхівки каналу лідера, зміна швидкості просування лідерного каналу та ін. Використання інформації про статистичний розподіл величин струмів та потенціалів дозволило обчислити ймовірність ураження кожної ділянки об’єкту, враховуючи також і бічні удари. Розрахунки показали можливість використання запропонованої методики для оцінки ефективності системи блискавкозахисту при проектуванні через порівняння ймовірності ураження наземного об’єкта та середньорічної кількості прогнозованих ударів для різних систем блискавкозахисту.Документ Моделювання електричних полів в околі електропровідних стрижнів – блискавкоприймачів(Національний технічний університет "Харківський політехнічний інститут", 2019) Сокол, Євген Іванович; Резинкіна, Марина Михайлівна; Резинкін, Олег Лук'янович; Литвиненко, Світлана Анатоліївна; Гриб, Олег ГерасимовичМетою роботи є розробка методу більш точного розрахунку розподілу електричного поля (ЕП) в системах з електропровідними стрижнями, забезпечуючи знаходження напруженості та потенціалу електричного поля при використанні просторової сітки з кроком, пропорційним довжині стрижня, а не його радіусу. Методика: описаний метод розрахунку електричного поля в околі електропровідних стрижнів з великим співвідношенням довжини до радіуса: більше 102–103. Запропонований метод заснований на техніці скінченного інтегрування та використанні інформації про нелінійне спадання напруженості та потенціалу ЕП у напрямках, перпендикулярних осі стрижня. Результати: показано, що найкращий збіг з аналітичними рішеннями може бути досягнутий шляхом отримання різницевих коефіцієнтів у вузлах, що оточують стрижень, за допомогою інтегрування виразів для ЕП струмопровідного еліпсоїда під потенціалом по поверхням комірок розрахункової сітки. Практичне значення: в результаті використання запропонованого методу стає можливим більш точний розрахунок напруженості електричного поля в зоні навколо стрижня під потенціалом або стрижня в однорідному ЕП при застосуванні сітки, крок якої порівняний з його довжиною, а не радіусом. Новизна: використання запропонованого способу для розрахунку напруженості ЕП в околі електропровідних стрижнів з урахуванням нелінійного характеру спадання напруженості та потенціалу в безпосередній близькості від стрижня за допомогою аналітичних виразів для ЕП витягнутого струмопровідного еліпсоїду під потенціалом зменшує відносні похибки розрахунку напруженості ЕП в зоні навколо стрижня і вище його вершини з 27 % до 3 % і менше. У цьому випадку просторовий крок обирається пропорційним довжині стрижня, а не його радіусу. Наведено приклад розрахунку напруженості електричного поля в умовах грози.