Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
3 результатів
Результати пошуку
Документ Моделювання навантаження віртуальної електростанції котеджного поселення(ТОВ "Друкарня Мадрид", 2020) Кулапін, Олександр Валентинович; Махотіло, Костянтин ВолодимировичДокумент Підходи до визначення та стан розвитку концепцій інтелектуальних енергосистем і віртуальних електростанцій(Національний технічний університет "Харківський політехнічний інститут", 2019) Кулапін, Олександр Валентинович; Махотіло, Костянтин ВолодимировичУ роботі виконано аналіз сучасного стану розвитку та нормативного визначення концепцій інтелектуальних енергосистем, енергетичних просьюмерів і віртуальних електростанцій в Європейському Союзі та США. Визначено базові складові поняття Smart Grid, які є спільними для підходів в цих країнах, а також ключові особливості, що їх відрізняють. Показано взаємозв’язок понять енергетичних просьюмерів та віртуальних електростанцій. Зазначено, що ключовими факторами, що забезпечують розвиток усіх цих технологій, є стрімке зростання відновлюваної генерації та невпинні зусилля з запобігання змінам клімату в усьому світі. Виконано аналіз розроблених схем організації віртуальних електростанцій та функцій їх учасників. Показано, що технологічною базою для їх функціонування мають стати інтелектуальні електромережі. Ґрунтуючись на огляді літератури, зроблено висновки про актуальність впровадження інтелектуальних електромереж та віртуальних електростанцій в об’єднаній енергосистемі України задля підтримки подальшого розвитку відновлюваної генерації. При цьому відмічена необхідність застосування не лише нормативних документів ЄС, але й врахування підходів США.Документ Моделювання смарт-мережі споживачів-просьюмерів з фотоелектричними системами(Національний технічний університет "Харківський політехнічний інститут", 2019) Кулапін, Олександр Валентинович; Махотіло, Костянтин ВолодимировичЗапропоновано модель вузла смарт-мережі для споживача-просьюмера в межах котеджного селища. Модель включає в себе типові добові графіки навантаження будинку та генерації дахової фотоелектричної системи, модель акумуляторної системи зберігання енергії та контролера вузла смарт-мережі. Розроблено алгоритми керування роботою вузла смарт-мережі, який передбачає різні режими роботи для літа та зими. В залежності від години доби, стану заряду акумулятора, генерації фотоелектричної системи та навантаження будинку контролер керує балансуючим споживанням або віддачою енергії до мережі, заряджанням або розряджанням акумулятора, купівлею або продажом енергії просьюмером до енергосистеми. Метою керування влітку є повне використання енергії, виробленої власною фотоелектричною системою, для власного споживання та продажу надлишків в енергосистему в години пікового навантаження. Метою керування взимку є зниження витрат споживача за рахунок перенесення навантаження на нічні години та збільшення доходів від перепродажу накопиченої енергії до енергосистеми в пікові години. За результатами моделювання на прикладі котеджного селища в харківській області визначено мінімальну ємність акумуляторної системи, якої достатньо для забезпечення автономності споживача-просьюмера влітку та отримання доходу від перепродажу енергії взимку. Показано, що запропоновані алгоритми керування роботою вузла смарт-мережі дозволяють споживачу-просьюмеру ефективно використовувати власну фотоелектричну систему та надавати системні послуги об’єднаній енергосистемі.