Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 25
  • Ескіз
    Документ
    Вплив умов електролізу на склад електролітичних композиційних покриттів на основі кобальту
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Ненастіна, Тетяна Олександрівна; Сахненко, Микола Дмитрович; Дженюк, Анатолій Володимирович
    Електроосадження композитів та покриттів тугоплавкими металами з кобальтом дозволяє отримувати покриття з унікальним поєднанням фізико-хімічних властивостей, недосяжних при використанні інших методів нанесення. Однією з причин обмеженого використання лектролітичного способу нанесення покриттів такими композитами є складність керування процесом. Властивості композитів і сплавів металів підгрупи заліза з тугоплавкими металами залежать не тільки від хімічного складу, тобто вмісту тугоплавкого компонента, але і умов осадження. Варіюванням складу електроліту в гальваностатичному режимі не вдається отримати якісні композиційні покриття с високим вмістом тугоплавких компонентів та виходом за струмом. Як альтернативу запропоновано використання імпульсного режиму електролізу, що дозволяє вдосконалити технологічний процес отримання композиційних покриттів та осаджувати покриття різного складу, а відповідно, і різних функціональних властивостей. Досліджено процес формування композиційних електролітичних покриттів на основі кобальту Co-W-ZrO2 в імпульсному режимі з дифосфатно-цитратного електроліту. Вивчено вплив густини струму, тривалості імпульсу та частоти на склад, морфологію поверхні та вихід за струмом композитів. Підвищення робочих густин струму приводить до зменшення вмісту тугоплавких металів в композиційних електролітичних покриттях та збільшення вмісту кисню. Отримані покриття вирізняються рівномірно розвиненою поверхнею без тріщин, що забезпечує високу адгезію. Встановлено, що розміри глобул на поверхні сплаву зменшуються зі збільшенням густини струму до 10 А/дм2. Управління складом гальванічних сплавів Co W-ZrO2 в широкому діапазоні концентрацій сплавотвірних компонентів досягається варіюванням параметрів імпульсного електролізу, що дозволяє адаптувати технологію нанесення до потреб сучасного ринку.
  • Ескіз
    Документ
    Особливості формування електролітичних покриттів на основі сплавів кобальту
    (Київський національний університет технологій та дизайну, 2020) Ненастіна, Тетяна Олександрівна; Проскуріна, Валерія Олегівна; Ведь, Марина Віталіївна; Горохівська, Наталя Валентинівна
    The possibility of electrosynthesis and composition / surface morphology control of electrolytic coatings based on cobalt alloys with refractory metals by varying the electrolysis parameters is proved. The scattering capacity characteristics and specific conductivity of deposition electrolytes of Co-Mo-WOx and Co-Mo-ZrO2 coatings are established. The composition and morphology of Co-Mo-WOx, Co-Mo-ZrO2, Co-Mo-W-V and Co-Mo-Zr-V coatings were determined. It is established that incompletely reduced oxides of the refractory metals are included into the coatings composition, which allows to position them as composite.
  • Ескіз
    Документ
    Визначення констант стійкості комплексів в цитратно-пірофосфатному електоліті для нанесення тернарних сплавів кобальт- молібден- вольфрам
    (Харківський національний університет імені В. Н. Каразіна, 2014) Гапон, Юліана Костянтинівна; Ненастіна, Тетяна Олександрівна; Сахненко, Микола Дмитрович; Ведь, Марина Віталіївна
  • Ескіз
    Документ
    Електроліти для гальванохімічного осадження потрійних сплавів кобальт – вольфрам – молібден
    (Сумський державний університет, 2016) Гапон, Юліана Костянтинівна; Сахненко, Микола Дмитрович; Ведь, Марина Віталіївна; Ненастіна, Тетяна Олександрівна
  • Ескіз
    Документ
    Фотокаталітичні властивості електролітичних покриттів на основі кобальту
    (Видавнитво від А до Я, 2021) Ненастіна, Тетяна Олександрівна; Сахненко, Микола Дмитрович; Проскуріна, Валерія Олегівна; Зюбанова, Світлана Іванівна
  • Ескіз
    Документ
    Контроль рH розчинів гальванічних ванн
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Овчаренко, Ольга Олександрівна; Ненастіна, Тетяна Олександрівна; Проскуріна, Валерія Олегівна; Школьнікова, Тетяна Василівна
  • Ескіз
    Документ
    Корозійна стійкість покриттів сплавами Fe–Co в нейтральному середовищі
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Проскуріна, Валерія Олегівна; Ведь, Марина Віталіївна; Ненастіна, Тетяна Олександрівна; Овчаренко, Ольга Олександрівна; Степанова, Ірина Ігорівна
  • Ескіз
    Документ
    Особливості електрохімічного осадження композиційних покриттів на основі кобальту
    (ТОВ "Твори", 2020) Ненастіна, Тетяна Олександрівна; Ведь, Марина Віталіївна; Сахненко, Микола Дмитрович; Проскуріна, Валерія Олегівна
  • Ескіз
    Документ
    Електроліт для нанесення покриттів сплавом кобальт-вольфрам-цирконій
    (ДП "Український інститут інтелектуальної власності", 2019) Сахненко, Микола Дмитрович; Ведь, Марина Віталіївна; Ненастіна, Тетяна Олександрівна; Овчаренко, Ольга Олександрівна; Проскуріна, Валерія Олегівна
    Електроліт для нанесення покриттів сплавом кобальт-вольфрам-цирконій містить кобальту(II) сульфат, цирконію(IV) сульфат, калію пірофосфат, натрію цитрат, натрію сульфат, натрію вольфрамат.
  • Ескіз
    Документ
    Спосіб нанесення покриттів сплавом кобальт-вольфрам-цирконій
    (ДП "Український інститут інтелектуальної власності", 2020) Сахненко, Микола Дмитрович; Ведь, Марина Віталіївна; Ненастіна, Тетяна Олександрівна; Проскуріна, Валерія Олегівна
    Спосіб нанесення покриттів сплавом кобальт-вольфрам-цирконій на метали та сплави шляхом катодного осадження з цитратно-пірофосфатного електроліту, що містить кобальту(ІІ) сульфат, цирконію(ІV) сульфат, натрію вольфрамат, калію пірофосфат, натрію цитрат, натрію сульфат, імпульсним електролізом, імпульсним електролізом у водному розчині. Процес проводять при температурі 20-30 °C імпульсним струмом амплітудою 2-12 А/дм² при тривалості імпульсу 2·10ˉ³-1·10‾¹ с, тривалості паузи 5·10ˉ³-2·10‾¹.