Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 29
  • Ескіз
    Публікація
    Методичні вказівки до розрахункової роботи "Розрахунок робочого процесу поршневого двигуна внутрішнього згоряння"
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Пильов, Вячеслав Володимирович
    Робочий процес поршневого двигуна внутрішнього згоряння (ДВЗ) – це сукупність циклічних термодинамічних та газодинамічних процесів, комплексу хімічних реакцій, процесів переносу маси та теплообміну, що протікають в об’ємі циліндра двигуна, обмеженому поршнем, гільзою та головкою циліндра. Моделювання його перебігу потрібне для визначення основних параметрів геометрії та роботи деталей циліндро-поршневої групи і основних систем двигуна, сукупність яких забезпечує його функціонування та надійну роботу. Саме на основі розрахунку робочого процесу при проєктуванні визначають оціночні величини найважливіших показників двигуна, таких як його потужність і споживання палива під час роботи. Вміння виконувати розрахунок робочого процесу і оцінювати отримані на його основі показники двигуна є важливою частиною курсу «Теплові двигуни та нагнітачі» і навичок бакалавра теплоенергетики. Моделювання робочого процесу може здійснюватись на різному рівні складності, з урахуванням різної кількості факторів. Під час вирішення розрахункового завдання передбачається розрахунок робочого процесу в нуль-вимірному вигляді, коли внутрішньоциліндровий простір вважається термодинамічною системою з однаковими значеннями параметрів стану, властивими усім її частинам в кожний окремий момент часу. Алгоритм такого моделювання передбачає розрахунок послідовної зміни стану речовини в циліндрі двигуна при її механічній взаємодії з поршнем, теплообміні зі стінками, виділенням теплоти під час згорання палива, а також обміну масою та ентальпією з середовищем за межами циліндру під час газообміну. Зазвичай, такий підхід є придатним для оцінки роботи двигуна лише на режимах роботи близьких до номінального, оскільки вплив на результат інших неврахованих факторів на часткових режимах буде занадто великим. Розрахункове завдання містить спрощену методику порівняно з розрахунком, призначеним для ідентифікації робочого процесу на основі експериментальних даних, чи прєктним розрахунком. Ряд параметрів, які зазвичай повинні бути підібрані в ітераційному розрахунку для замикання циклічного процесу (тобто забезпечення повернення системи в стан, що не відрізняється від початкового), а також із залученням даних двигунів конструкцій-аналогів, задаються безпосередньо як вихідні дані. Також у запропонованій методиці спрощено розглядаються процеси в циліндрі на тактах газообміну. Це пов’язано з тим, що визначення потоку маси крізь органи газорозподілу потребує інформації щодо геометрії останніх, кінематики їх роботи і розрахунку газодинамічних явищ у них.
  • Ескіз
    Документ
    Удосконалення поршня дизеля з об'ємно-плівковим сумішоутворенням
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Пильов, Вячеслав Володимирович; Пильова, Тетяна Кузьмівна
  • Ескіз
    Публікація
    Моделювання температурного стану головки циліндрів дизельного двигуна з шаром нагара на ній
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Ліньков, Олег Юрійович; Пильов, Вячеслав Володимирович; Кравченко, Сергій Олександрович
  • Ескіз
    Публікація
    Методика визначення порогу повзучості матеріалу поршня для оцінки параметричної надійності його бічної поверхні
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Ліньков, Олег Юрійович; Пильов, Вячеслав Володимирович; Ликов, Сергій Валентинович; Пильов, Володимир Олександрович
    Постійне підвищення питомої потужності двигунів призводить до роботи матеріалів, що утворюють камеру згоряння, на межі їх міцності та зменшення надійності конструкцій двигунів. Передбачення надійної роботи елементів конструкції двигуна стає все більш актуальним і вимагає наявності відповідних методик для такої оцінки. За найбільш показовий елемент камери згоряння взято поршень. Він працює при значних термічних навантаженнях і саме його поверхні можуть працювати на межі призначених показників надійності. Аналіз публікацій показав актуальність поставленої задачі через зафіксовані випадки втрати параметричної надійності поршня з цілого ряду причин. Для забезпечення параметричної надійності бічної поверхні поршня під час проектування необхідно застосовувати додатковий критерій, якій повинен враховувати значення порогу повзучості матеріалу в продовж експлуатації. В роботі відмічена специфічність багатьох матеріалів – незначна тривалість першої стадії повзучості – їх зміцнення. В дослідженні розглянуто схему деформування критичної зони юбки поршня при визначенні порогу повзучості матеріалу за традиційною методикою та при врахуванні факту наявності стадії повзучості початкового зміцнення матеріалу. Встановлено відмінності результатів при врахуванні властивостей незміцненого та зміцненого поршневого алюмінієвого сплаву АК12М2МгН внаслідок повзучості. Показано, що результати досліджень щодо порогу повзучості незміцненого алюмінієвого сплаву слід враховувати в оцінках параметричної надійності бокової поверхні поршнів форсованих за потужністю двигунів. Саме для цієї зони межа повзучості матеріалу найбільше відрізняється для зміцненого і незміцненого матеріалу. Наступний напрям робіт пов'язано з визначенням порогу повзучості інших матеріалів та застосування отриманих даних в критерії параметричної надійності.
  • Ескіз
    Публікація
    Концептуальні положення щодо забезпечення надійності поршнів форсованих дизелів протягом заданого ресурсу
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Марченко, Андрій Петрович; Ліньков, Олег Юрійович; Пильов, Вячеслав Володимирович; Ликов, Сергій Валентинович; Аріан, Расул; Пильов, Володимир Олександрович
    Проектування сучасних енергетичних установок передбачає проведення розрахункових досліджень щодо відповідності конструкції закладеним параметрам надійності та забезпечення ресурсу. Проте трапляються випадки, коли конструкція, яка за розрахунками є працездатною, в експлуатації виходить з ладу навіть не наблизившись до межі свого ресурсу, а інколи – ще безпосередньо на початку експлуатації. Такі випадки трапляються через те, що матеріали, задіяні в конструкції, працюють на межі своєї міцності, а інколи і перетинаючи її. Ці факти пов'язані з постійним підвищенням потужності енергетичних установок. Таким чином, стає необхідним доповнення відомих моделей з врахування комплексу факторів, що впливають на фізичну і параметричну надійність конструкції. В роботі проведено аналіз публікацій та поставлено задачі дослідження, проаналізовано основні проблеми втрати фізичної і параметричної надійності поршня, як одного з найбільш термонавантажених елементів конструкції дизеля, проаналізовано термонапружений стан характерних критичних зон поршня, показано шляхи забезпечення надійності поршнів через корегування температурного стану конструкцій. За результатами аналізу проведено удосконалення моделі прогнозування надійності теплонапружених зон деталей циліндро-поршневої групи, запропоновано відповідну схему інтегрованого програмного комплексу та сформульовано вимоги щодо його застосування. В основу підходу покладено застосування критерію фізичної надійності конструкцій та двох критеріїв їх параметричної надійності – від зношення пар тертя та не перевищення межі повзучості матеріалу. Проведена робота дозволяє отримати конструкцію, що буде гарантовано відповідати вимогам з фізичної та параметричної надійності. Також показано необхідність подальшого напряму робіт в напряму розширення відомостей щодо властивостей матеріалів, які застосовують в конструкціях.
  • Ескіз
    Публікація
    Дослідження теплового стану головки циліндру середньообертового дизеля
    (Херсонська державна морська академія, 2020) Ліньков, Олег Юрійович; Кравченко, С. А.; Пильов, Вячеслав Володимирович
  • Ескіз
    Публікація
    Двигун внутрішнього згоряння
    (ДП "Український інститут інтелектуальної власності", 2019) Пильов, Вячеслав Володимирович; Пильова, Тетяна Кузьмівна
    Двигун внутрішнього згоряння, що містить розпилювач форсунки з отворами для подачі палива в камеру згоряння та поршнем, власне тіло якого виконано з алюмінієвого сплаву та який містить камеру згоряння, що має кромку, бічну поверхню і денце, та кільцеву вставку, яку виконано з низькотеплопровідного матеріалу. Кільцеву вставку утворено з ділянок двох видів, які чергуються між собою. При цьому внутрішня поверхня кожної ділянки першого виду співпадає з бічною поверхнею камери згоряння. Ділянки другого виду заглиблені в тіло поршня. При цьому кількість ділянок першого виду відповідає кількості отворів розпилювача форсунки, висота кожної з ділянок першого виду дорівнює 5-20 мм та не перевищує відстань від кромки до денця камери згоряння. Довжина кожної з ділянок першого виду дорівнює 5-30 мм, точка перетину внутрішньої поверхні кожної ділянки першого виду віссю отвору розпилювача форсунки поділяє ділянку так, що відношення частини її висоти, оберненої до кромки камери згоряння, до висоти ділянки першого виду складає 0,1-0,5, а відношення частини її довжини до довжини ділянки першого виду складає 0,2-0,8.
  • Ескіз
    Публікація
    Методичні вказівки до практичної роботи "Дослідження нестаціонарного високочастотного температурного стану поверхні камери згоряння поршня"
    (2017) Пильов, Вячеслав Володимирович
    Застосування штучної частково-динамічної теплоізоляції деталей ДВЗ є одним з перспективних напрямів комплексного покращення їх показників. Прогнозування впливу такої теплоізоляції на перебіг робочого процесу і надійність деталей при проектуванні нових та вдосконаленні існуючих конструкцій вимагає визначення температури поверхні камери згоряння, як змінної протягом робочого циклу двигуна. Метою практичної роботи є закріплення засвоєних у теоретичній частині курсу відомостей та набуття практичних навичок дослідження процесу нестаціонарного високочастотного теплообміну у камері згоряння ДВЗ. У роботі студентами виконується оцінка зменшення втрат теплоти від робочого тіла до поршня при наявності на його поверхні шару теплоізоляції різної природи, аналізується вплив теплоізоляції на температурне коливання цієї поверхні. Поставлена мета найбільш результативно досягається за умови попередньої самостійної підготовки студентів до заняття. Під час виконання роботи студентами згідно з індивідуальними варіантами завдань, із застосуванням спеціального програмного забезпечення та табличного процесора MS Excel, здійснюються розрахунки одновимірного температурного стану поршня при стаціонарній та нестаціонарній високо-частотній постановках задачі. Отримані для різних варіантів розрахунку результати порівнюються, на основі чого формулюються висновки щодо впливу окремих факторів на температурний стан деталі.
  • Ескіз
    Публікація
    Методичні вказівки до лабораторної роботи "Дослідження темпу нагрівання термічно тонкого тіла"
    (2021) Пильов, Вячеслав Володимирович; Алтухова, Ольга Василівна
    Вміння вирішувати задачі нестаціонарного теплообміну є важливою частиною курсу "Тепло- і масообмін", оскільки це є необхідним при дослідженні явищ термічного навантаження та втоми деталей машин та теплоенергетичних установок, визначення необхідних температурних режимів печей при прогріві болванок, охолодженні ливарних форм та вирішенні інших інженерних завдань. Окрім цього, найбільш точні сучасні способи визначення теплофізичних властивостей нових речовин базуються на дослідженні нестаціонарної теплопровідності їх зразків. Метою лабораторної роботи є дослідження процесу нагрівання й охолодження термічно тонкого тіла як найпростішого з математичної точки зору випадку нестаціонарної задачі, що дозволяє студентам ознайомитись з методами проведення відповідних експериментів та обробки їх результатів.
  • Ескіз
    Документ
    Покращення конструкції головки циліндрів середньообертового дизеля
    (Херсонська державна морська академія, 2019) Кравченко, С. А.; Ліньков, Олег Юрійович; Пильов, Вячеслав Володимирович