Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Computer-integrated design of cast parts on the criterion of performance on the example of the turbine wheel turbocharger
    (2019) Akimov, O. V.; Soloshenko, V.; Kostyk, K. O.
    In this work the method of computer modeling solved the problem of reducing the efficiency of the turbocharger associated with the mismatch of the geometry of the resulting casting petal turbine technology geometry, calculated gas-dynamic calculations. Computer methods was calculated crystallization of the casting and hardening of the stencil. Computer simulation showed that there is a significant change in the geometry of the turbine blade, which adversely affected the geometry of the resulting casting. Was proposed and solved by the method of computer simulation of "reverse" task of the task of such a geometry of the mold, the solidification of the stencil in water and its deformation led to a (given) geometry of the resulting casting of the turbine of the turbocharger. The solution of this problem by the method of computer modeling allowed to reduce the production defect on the discrepancy of the turbine blade geometry of the turbocharger by 90 %.
  • Ескіз
    Документ
    Surface hardening of steel parts
    (Одеський національний політехнічний університет, 2017) Idan, Alaa Fadhil І; Akimov, O. V.; Kostyk, K. O.
    Development of new resource-saving and costeffective technologies of combined hardening of steel parts with a significant reduction of the process duration is an important and urgent task. Aim: The aim of the work is to create a technology for combined toughening of steel parts to provide high operational properties of the steel surface layer by intensifying the nitriding process through the laser pre-treatment of steel products. Materials and Methods: Materials for study are types of steels 40, 40Cr and 38Cr2MoAl. Laser treatment of steel was performed at the LATUS-31 installation. Nitriding carried out in the environment of fine nitrogen-containing substance with activators at a temperature of 530…560 ºC during 2…3 hours. The nitriding process was carried out in the closed atmosphere in the chamber furnace without application of the protective atmospheres. Influence of laser pre-treatment and final nitriding on structure, thickness, phase structure, microhardness of surface layers of steel samples has been investigated. Results: It is shown that preliminary hardening by laser increases surface hardness in 0.88…1.15 times after nitriding, depending on brand of steel and speed of a laser beam movement, in comparison with steel nitriding in similar conditions. The combined treatment promotes significant increase in the strengthened layer – up to 0.49 mm for 40 steel type, up to 0.55 mm for 40Cr steel type and up to 0.65 mm for 38Cr2MoAl steel type.