Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
3 результатів
Результати пошуку
Документ Flexible thermoelectric module based on zinc oxide thin film grown via SILAR(2021) Klochko, N. P.; Klepikova, K. S.; Khrypunova, I. V.; Zhadan, D. O.; Petrushenko, S. I.; Kopach, V. R.; Dukarov, S. V.; Sukhov, V. M.; Kirichenko, M. V.; Khrypunova, A. L.In this work, we used the low temperature solution growth Successive Ionic Layer Adsorption and Reaction (SILAR) for a deposition of the nanostructured undoped and indium doped (ZnO and ZnO:In) thin films on flexible polyimide (PI) substrates for their use as cheap non-toxic thermoelectric materials in the flexible thermoelectric modules of planar type to power up portable and wearable electronics and miniature devices. The use of a zincate solution in the SILAR method allows to obtain ZnO:In film, which after post-growth annealing at 300 ◦C has low resistivity ρ ≈ 0.02 Ω m, and high Seebeck coefficient 147 μV/K and thermoelectric power factor at near-room temperatures. As evidence of the operability of the manufactured films as the basis of the TE device, we have designed and tested experimental lightweight thin-film thermoelectric module. This TE module is able to produce specific output power 0.8 μW/m2 at ΔT = 50 K.Документ Thermoelectric textile with fibers coated by copper iodide thin films(2020) Klochko, N. P.; Klepikova, K. S.; Zhadan, D. O.; Kopach, V. R.; Chernyavskaya, S. M.; Petrushenko, S. I.; Dukarov, S. V.; Lyubov, V. M.; Khrypunova, A. L.Here we obtained thermoelectric (TE) textiles on the base of the commercial cotton and polyester fabrics. For this we used deposition of copper iodide (CuI) thin films via low-temperature cheap and scalable method Successive Ionic Layer Adsorption and Reaction (SILAR). The TE textiles are comfortable to wear, breathable, nontoxic, light-weight, flexible and air-permeable. The CuI films in the TE textiles are composed of accreted flakes with nanoscale thickness (<50 nm) or of nanowalls. Their crystal grains are less than 50 nm, contain a significant number of dislocations and an increased lattice parameter, and consequently have large compression microstrains. The TE textiles with CuI coated cotton and polyester have the Seebeck coefficients in the range of 120–180 μV K−1, which are constant at the temperatures 290–365 K. The most effective single p-CuI thermoelectric leg has low internal resistance 2 kΩ. Its specific output power at temperature gradient 50 K is 31 μW/m2. Three experimental flexible wearable TEGs of simple and affordable designs having each four thermocouples with n-Alumel and p-CuI thermoelectric legs on the thick cotton, thin cotton and polyester confirm the possibility of obtaining electricity using the developed TE textiles under conditions of temperature gradients from 5 to 50 K at near-room temperatures. The best TEG obtained on the polyester fabric has at temperature difference 50 K output TE characteristics: open circuit voltage 44 mV, short circuit current 1.3 µA, output power 16 nW. These characteristics remain unchanged after repeated bends of TEGs in the different directions.Документ Structure, optical, electrical and thermoelectric properties of solution-processed Li-doped NiO films grown by SILAR(Elsevier Ltd, 2018) Klochko, N. P.; Klepikova, K. S.; Zhadan, D. O.; Petrushenko, S. I.; Kopach, V. R.; Khrypunov, G. S.; Lyubov, V. M.; Dukarov, S. V.; Nikitin, V. O.; Maslak, M. O.; Zakovorotniy, A. Yu.; Khrypunova, A. L.The article presents a new facial synthesis of Li-doped NiO films (NiO:Li) via an easy and cost-effective method Successive Ionic Layer Adsorption and Reaction (SILAR) with the processing of the obtained NiO films in a lithium-containing aqueous solution for their transformation after annealing into NiO:Li layers. Comparative analysis of crystal structure, optical, electrical and thermoelectric properties of the obtained NiO and NiO:Li 420-1050 nm thick films have reveiled a cubic rock-salt NiO structure, at that, NiO:Li samples are nanocrystalline single phased Li-NiO solid solutions. The fabricated NiO and NiO:Li films are p-type semiconductors with activation energy Ea = 0.1 eV and Ea = 0.25‒0.31 eV, respectively. The obtained in-plane Seebeck coefficients Z are in the range 0.20–0.33 mV/К. Notwithstanding the fact that the maximum values of the thermoelectric power factors P=2.2 μW/K2·m, are rather small, they were achieved if the hot end of the NiO:Li film was heated only to 115 °C. Thus, the produced in this work new low cost thermoelectric thin film material is suitable for a production of electrical energy for low-power devices due to absorption of low-potential heat.