Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    The methodology of sharpening of blade tools made of superhard materials
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Fedorovich, V.; Ostroverkh, Y.; Kozakova, N.
    High durability of the blade tool from superhard materials (SНM), which have unique physical and mechanical properties, creates the prerequisites for its effective use in automated production. However, the widespread use of such tools is constrained by its relatively low reliability during operation. This disadvantage is due to the imperfection of the processes of obtaining SНM: the presence in it residual stresses, internal defects, which appear even after sharpening and thermo-activated finishing. The processes of sharpening of tool blade from superhard materials and cutting with this tool are characterized by high levels of contact pressures and temperatures in the treatment area. Therefore, it seems inappropriate to choose sparing conditions for its sharpening and refinement to ensure the defect of these processes. In connection with this, a new methodological approach is proposed, which makes it possible to determine the cutting conditions and other conditions for sharpening and finishing the SНM blade tool, in which material defects are revealed even at the tool manufacturing stage. To this end, in the software packages COSMOS, ANSYS, NOSTRAN, Third Wave AdvantEdge, thermo-force stress in the cutting edge of the tool simulated under extreme conditions while its operation. This simulations are the initial data for solving the inverse problem – finding conditions (speed, cross feed, normal pressure in the contact) and other diamond grinding modes (physical and mechanical properties of the bond and diamond grains of the wheel, grain size and concentration) according to the well-known stress-strain state cutter from SНM in extreme conditions of its operation. The proposed methodology allows rejecting defective cutters at the stage of their manufacture, thereby increasing the reliability of operation of blade tool from superhard materials.