Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Identification of the state of an object under conditions of fuzzy input data
    (ПП "Технологічний Центр", 2019) Semenov, Serhii. G.; Sira, Oksana; Gavrylenko, Svitlana; Kuchuk, Nina G.
    Проведена модернізація методів ідентифікації стану об'єктів в умовах нечітких вхідних даних, описаних своїми функціями належності. Обраний напрямок вдосконалення традиційних методів пов'язаний із принциповими особливостями вирішення цього завдання в реальних умовах малої вибірки вхідних даних. У цих умовах для розв’язання задачі ідентифікації стану доцільно перейти до менш вибагливої в інформаційному відношенні технології опису вихідних даних, заснованої на математичному апараті нечіткої математики. Цей перехід зажадав розробки нових формальних методів вирішення конкретних завдань. При цьому для багатовимірного дискримінантного аналізу розроблено методику розв’язання нечіткої системи лінійних алгебраїчних рівнянь. Для вирішення завдання кластеризації запропонована спеціальна процедура порівняння нечітких відстаней між об'єктами кластеризації і центрами групування. Обраний напрямок вдосконалення традиційного методу регресійного аналізу визначено неможливістю використання класичного методу найменших квадратів в умовах, коли всі змінні описані нечітко. Ця обставина привела до необхідності побудови спеціальної двохкрокової процедури вирішення завдання. При цьому реалізується мінімізація лінійної комбінації міри видалення шуканого рішення від модального і міри компактності функції приналежності пояснювальної змінної. Технологія нечіткого регресійного аналізу реалізована в важливому для практики випадку, коли вихідні нечіткі дані описані загальними функціями приналежності (L-R) типу. При цьому отримано аналітичний розв'язок задачі у вигляді розрахункових формул. В результаті обговорення показано, що модернізація класичних методів рішення задачі ідентифікації стану з урахуванням нечіткого характеру представлення вихідних даних дозволила проводити ідентифікацію об'єктів в реальних умовах малої вибірки нечітких вихідних даних.
  • Ескіз
    Документ
    Development of anomalous computer behavior detection method based on probabilistic automaton
    (National University of Civil Protection of Ukraine, 2019) Chelak, Viktor; Chelak, E.; Gavrylenko, Svitlana; Semenov, Serhii
    This work proposes anomalous computer system behavior detection method based on probabilistic automaton. Main components of the method are automaton structure generation model and its modification procedure. The distinctive feature of the method is the adaptation of the automaton structure generation procedure for detecting attack scenarios of the same type, by restructuring the automaton upon a match and by recalculating the probability of state changes. Proposed method allows to speed up the detection of anomalous computer behavior, as well as to detect anomalies in computer systems, scenario profiles of which only partially match the instances used to generate automaton structure. The obtained results allow us to conclude that the developed meth-od can be used in heuristic analyzers of anomaly detection systems.