Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ Analysis of residual stresses and durability of the cutting inserts after diamond-spark grinding(Editura "Academica Brâncuşi", Târgu Jiu, 2020) Sizyi, Yury; Strelchuk, R. M.; Jha, Shailendra Kumar; Rudnev, Alexander; Gutsalenko, YuryThe article presents an analysis of residual stresses and resistance of cutting inserts after the diamond-spark grinding. In the entire investigated range of traverses (0.01...0.07mm/double stroke) and wheel speed (18...32m/s), the total residual oriented stresses in both phases are compressive and they have an extreme character with a point of extremum (minimum) in the center of the interval (Sпоп = 0.04mm/double stroke; Vкр = 25m/s). In the carbide phase, the main share in the formation of the total stress state of the surface layer of the STIM-3B (СТИМ-3Б) hard alloy is made by macrostresses. The mechanism of their formation is thermal at small and large values of the traverse and wheel speed, and power one—at medium values. The importance of interfacial microstresses in this phase is minor. In the binding phase of nickel, the interfacial component contributes significantly to the formation of the general stress state, due to the force factor at average values of the grinding mode mechanical parameters and thermal parameters in the rest of the range. The highest wear resistance of tools made of STIM-3B (СТИМ-3Б) alloy corresponds to the highest value of compressive interfacial microstresses in the plastic phase (Ni).Документ Exploitative destruction features for detonation ultra-dispersed diamonds of initial metallic protection for abrasive powder grains to diamond-spark grinding tools(Constantin Brancusi University of Targu Jiu, 2015) Gutsalenko, Yury; Iancu, Cătălin; Bratan, SergeyThe problem of exploitation of diamond grinding wheels with metal coating for their grains including detonation ultra-dispersed diamonds to increase functional reliability to maintain the initial integrity of grains in the pressing and sintering of diamond-metal composites in the tool production is considered. One problem is that the presence of detonation ultra-dispersed diamonds in the grain metal coating of diamond powders not only improves the coating functional reliability in protection from destruction in the subsequent pressing and sintering in the production tool, but also resistance of such coating to the opening of the diamond cutting basis of the grains on the grinding wheel working surface that come into working contact with the material being processed. An analysis of the features of an effective exploitative destruction of detonation ultra-dispersed diamonds in the metal coating using electric current in the tool of the diamond-spark grinding processes is presented.