Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Simulation of Electromagnetic Conversion Process Under Torsion Waves Excitation
    (Інститут електродинаміки НАН України, 2018) Plesnetsov, S. Yu.; Petrishchev, O. N.; Mygushchenko, R. P.; Suchkov, G. M.
    Mathematical simulation and calculation of electromagnetic fields in the electromagnetic-acoustic transducer of rational design are performed under non-dispersive torsional waves excitation in tubular electrically conductive ferromagnetic hollow rods of small diameter, taking into account spatial, frequency, energy and material factors. The results of the research can be used to simulate and construct exciting EMATs for measuring, monitoring, and diagnostic equipment in the energy, nuclear, chemical and other industries in view of ultrasonic studies of ferromagnetic tubular products.
  • Ескіз
    Документ
    Simulation of Electromagnetic Conversion Process Under Torsion Waves Excitation
    (Інститут електродинаміки НАН України, 2018) Plesnetsov, S. Yu.; Petrishchev, O. N.; Mygushchenko, R. P.; Suchkov, G. M.
    Mathematical modeling of the electromagnetic-acoustic transducer (EMAT) for excitation of nondispersive torsional waves in tubular electrically conductive ferromagnetic hollow rods of small diameter is performed taking into account all the factors that determine the design of the EMAT. The solutions of the differential equation for the values of the electromagnetic fields formed by the high-frequency coil of the device in the gap between the transducer and the tubular ferromagnetic product are found. The results of the research can be used to simulate and design exciting EMATs for measuring, monitoring, and diagnostics in the energy, nuclear, chemical and other industries for ultrasonic test of ferromagnetic tubular products.
  • Ескіз
    Документ
    Electromechanical transient processes during supply voltage changing in the system of polymer insulation covering of the current-carrying core ofultra high voltage cables
    (НТУ "ХПИ", 2018) Zolotaryov, V. M.; Shcherba, M. A.; Belyanin, R. V.; Mygushchenko, R. P.; Korzhov, I. M.
    The article is devoted to the analysis of the electromechanical transient processes in a system of three frequency-controlled electric drives based on asynchronous motors that control current-carrying core motion, as well asto the study of the effect of such processes on the modes applying three-layer polymer insulation to the current-carrying core. The study was conducted based on the concepts of electromechanics, electromagnetic field theory, mathematical physics, mathematical modeling. A mathematical model has been developed to analyze transients in an electromechanical system consisting of three frequency-controlled electric drives providing current-carrying core motion of ultra-high voltage cables in an inclined extrusion line. The coordination of the electromechanical parameters of the system drives has been carried out and the permissible changes in the supply voltage at the limiting mass while moving current-carrying core of ultra-high voltage cables with applied polymer insulation have been estimated. For the first time it is determined that with the limiting mass of the current-carrying core, the electromechanical system allows to stabilize the current-carrying core speed with the required accuracy at short-term decreases in the supply voltage by no more than 27 % of its amplitude value. It is also shown that this system is resistant to short-term increases in voltage by 32 % for 0.2 s. Using the developed model, it is possible to calculate the change in the configuration and speed of the slack current-carrying core when applying polymer insulation, depending on the specific mass of the current-carrying core per unit length, its tension atthe bottom, the torque of the traction motor and the supply voltage to achieve stable operation of the system and accurate working of the set parameters.