Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ Development of technology for forming vacuum-arc TiN coatings using additional impulse action(Institute for Single Crystals, 2022) Pinchuk, N. V.; Starikov, V. V.; Kniazieva, H. O.; Surovytskyi, S. V.; Konotopska, N. V.The effect of supplying a constant and high-voltage pulse with duration of 10 μs on the formation of predominantly oriented crystallites and the stress-strain state of vacuum-arc TiN coatings at two pressures of a nitrogen atmosphere is analyzed. It is shown that the deposition of the coatings under conditions of high voltage cascading effect leads to the growth of crystallites with the texture axis [110]. and to a change in the stress-strain state (reduction of deformation in the group of crystallites with the axis [111]). The obtained results are explained by an increase in the mobility of atoms and ordering processes in the region of the displacement cascades formed under the action of bombarding high-energy ions accelerated in the field of high-wave pulse potential. Computer simulations of the main processes observed during deposition were performed.Документ Influence of Bias Potential Magnitude on Structural Engineering of ZrN-Based Vacuum-Arc Coatings(Vasyl Stefanyk Precarpathian National University, 2021) Sobol, O. V.; Postelnyk, H. O.; Pinchuk, N. V.; Meylekhov, A. A.; Zhadko, M. A.; Andreev, A. A.; Stolbovoy, V. A.The creation of the scientific foundations for the structural engineering of ultrathin nanolayers in multilayer nanocomposites is the basis of modern technologies for the formation of materials with unique functional properties. It is shown that an increase in the negative bias potential (from -70 to -220 V) during the formation of vacuum-arc nanocomposites based on ZrN makes it possible not only to control the preferred orientation of crystallites and substructural characteristics, but also changes the conditions for conjugation of crystal lattices in ultrafine (about 8 nm) nanolayers.