Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Metrological study of the effect of temperature on the dissociation of acetic acid
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Mygushchenko, R. P.; Volobuyev, M. M.; Asieieva, I. V.; Kropachek, O. Yu.; Baliev, V. M.
    This article is devoted to the study of the dissociation reaction of acetic acid at a temperature change in the range from room (20 °C) to 75 °C. In the course of research, the methods were considered, the classification of the considered methods was carried out, and the methodology of the experiments was formulated. The selected technique reflects the express measurement of the hydrogen pH indicator using a portable pH-meter. Experiments were carried out in laboratory conditions – Lincoln Park, Chicago, USA. Acetic acid with a concentration of 6 mol/l was chosen as the basis. By adding a distilled water, a base concentration of 1 mol/l was obtained. Nodal temperature points were selected for measurements (four points in the temperature range of 20 °C – 75 °C); five experimental samples of acetic acid (1 mol/l) were formed; the analysis of the measurement results at nodal points was carried out for the accuracy of the measurement results of five test samples of acetic acid using first- and second-order statistical moments (mathematical expectation and variance); accuracy characteristics of experimental data (instrumental and methodical errors) were estimated. Research samples (acetic acid samples) were brought to the nodal points with a positive temperature gradient using a steam bath. The measurement error estimate was determined by the accuracy class of the device and was 0.1%. The obtained pH values were converted to the number of hydrogen cations, followed by the determination of the degree of dissociation and the dissociation constant. These determinations were carried out under the condition of ensuring chemical equilibrium. The nature of the behavior of the degree and constant of dissociation when the temperature of the test samples changes is clearly non-linear. In the course of research, the main measurement errors were established, the main of which is the nonlinearity of the transformation. Quantitative values of nonlinearity errors were determined by the method of measurements with multiple observations using the Student's correction factor. The article provides conclusions based on the results of research and presents the prospects for temperature correction of pH-meters to eliminate the temperature component of the error of pH-meters.
  • Ескіз
    Документ
    Сorrosion behavior of the electrolytic ternary cobalt alloys with Mo(W) and Zr in alkaline solution
    (Інститут загальної та неорганічної хімії ім. В. І. Вернадського, 2019) Nenastina, T. A.; Ved, M. V.; Sakhnenko, N. D.; Yermolenko, I. Yu.; Proskurina, V. A.; Volobuyev, M. M.
    The ternary Co–Mo–W(Zr) coatings with total content of refractory metals of 30–40 wt.%, and Co–W–Zr alloys (12–26 wt.%) are deposited from pyrophosphate-citrate electrolytes in pulse regime. The composition of the coatings as well as the surface morphology depends on the current density. The X-ray diffraction patterns reflect the amorphous-and-crystalline ternary alloys structure. Phases of α-Co, Co–Mo intermetallic compounds, and traces of metallic molybdenum were detected in the Co–Mo–Zr coatings. Phase composition of Co–Mo–W deposits differs by emergence of Co₇W₆ phase and traces of metallic tungsten, and there is no metallic W in Co–W–Zr electrolytic alloys. The corrosion behavior of ternary coatings in alkaline medium studied by EIS shows that Co–Mo–Zr alloys are characterized by highest corrosion resistance among deposited coatings due to presence of metallic molybdenum and stoichiometric ZrO₂ with both high electrical resistivity and chemical stability. The coatings Co–Mo–W and Co–Mo–Zr containing phases of Mo or W are characterized by higher corrosion resistance as compared with that without metallic molybdenum and tungsten. The cyclic voltammetry data confirm stability of ternary coatings in alkaline solution under anodic polarization. Such properties as well as the developed globular surface make materials promising for use as anodes in fuel cells in particular based on alkali electrolytes.