Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
3 результатів
Результати пошуку
Документ Hybrid solar generating module development for high-efficiency solar energy station(Сумський державний університет, 2018) Zaitsev, R. V.; Kirichenko, M. V.; Khrypunov, G. S.; Prokopenko, D. S.; Zaitseva, L. V.Experimentally established, the influence of the working temperature and solar radiation power on the efficiency of industrial production silicon solar cells. Based on the experimental results designed the concept of a hybrid solar generating module equipped with a mirror concentrator of solar radiation and solar cells cooling system for using in high-performance solar energy station. Concentrator of solar radiation provides in 1.5-time increase of electrical power generating by such module, and water-cooling system can reduce the equilibrium temperature of the module up to 10 degrees and twice reduce efficiency losses from solar cells overheating. The proposed concept will reduce the number of modules needed to build solar energy station.Документ Operating temperature effect on the thin film solar cell efficiency(Сумський державний університет, 2019) Zaitsev, R. V.; Kirichenko, M. V.; Khrypunov, G. S.; Radoguz, S. A.; Khrypunov, M. G.; Prokopenko, D. S.; Zaitseva, L. V.The made research results of the dependence of the film photovoltaic converter efficiency on their operating temperature and their comparison are considered in the paper. The physical mechanisms of temperature influence analysis on output, diode and electronic parameters of photovoltaic converters were conducted. The output parameters determination of the flexible photovoltaic converters was carried out by measurement of light current-voltage characteristics by using illuminator based on powerful semiconductor LEDs with different colors for simulated radiation which is close to the standard ground and ultraviolet solar spectrum. For ensuring effective non-destructive switching of the test specimens of the flexible PVC based on cadmium telluride to the measurement circle, the special contact device was developed and used. The main feature of contact device is four separate vertically moving metal probes in form of semi spheres with polished surfaces, which makes it impossible to puncture the PVC electrodes. These probes have possibility of individual positioning of each probe that is carried out with the help of a hard rotary console of variable length attached to the body and can be pressed with a given effort without impact on the frontal and any rear electrodes of the PVC experiments. The efficiency temperature coefficients of the photovoltaic converter, which make up for devices with a CdTe of 0.14 %/C, CuInSe2 – 0.36 %/C, amorphous silicon - 0.21 %/C were obtained. The analytical processing and analysis of the light diode characteristic effect on the PVC efficiency based on the CdTe showed that the temperature stability of their efficiency is ensured by the diode current density, the incision of which increases by 50 % from 1.9·10 – 9 A to 2.7·10 – 9 A with the temperature rise from 20 °С to 50 °С. At the same time, it has been established for PVC on the CuInSe and amorphous silicon base that the decrease of short circuit current density, open circuit voltage and fill factor of current-voltage characteristics plays the main role in efficiency reduction with rising temperature.Документ Constructive solution of highly effective photoenergy module: development and experimental testing(Национальный технический университет "Харьковский политехнический институт", 2019) Zaitsev, R. V.; Kirichenko, M. V.; Khrypunov, G. S.; Zaitseva, L. V.; Chugai, O. N.; Drozdova, A. A.Based on experimental study and computermodeling of working temperature influence on the efficiency of Chinese production silicon solar cells identified temperature dependence of efficiency shows the feasibility of using Chinese production Si-SC in the construction of photovoltaic thermal system, which together with the heat pump is part of a combined system for hot water supply, heating and air conditioning. Based on a detailed analysis of the working temperature influence on the efficiency of photovoltaic processes that determine the solar cells work, it has been developed the optimal construction and technological solution of hybrid solar generated module, the main feature ofwhich is the heat exchange block, designed to reduce the solar cells working temperature. The experimental testing of hybrid modules samples equipped with developed cooling system, high-voltage part of power take-off system demonstrates their reliability and high efficiency which allow to achieve the such module efficiency up to 18.5 %.