Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Implementing of Microsoft Azure machine learning technology for electric machines optimization
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Pliuhin, V.; Sukhonos, M.; Pan, M.; Petrenko, O.; Petrenko, M.
    Purpose. To consider problems of electric machines optimizationwithin a wide range of many variables variation as well as the presence of many calculation constraints in a single-criteria optimization search tasks. Results. A structural model for optimizing electric machines of arbitrary type using Microsoft Azure machine learning technology has been developed. The obtained results, using several optimization methods from the Microsoft Azure database are demonstrated. The advantages of cloud computing and optimization based on remote servers are shown. The results of statistical analysis of the results are given. Originality. Microsoft Azure machine learning technology was used for electrical machines optimization for the first time. Recommendations for modifying standard algorithms, offered by Microsoft Azure are given. Practical value. Significant time reduction and resources spent on the optimization of electrical machines in a wide range of variable variables. Reducing the time to develop optimization algorithms. The possibility of automatic statistical analysis ofthe results after performing optimization calculations.