Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ The nature of the formation of surface micro-roughness in vibration finishing and grinding processing(Національний технічний університет "Харківський політехнічний інститут", 2022) Mitsyk, A.; Fedorovich, V.The main aspects related to the nature of the formation of surface micro-roughness during vibration finishing and grinding processing are given. It is indicated that the material removal from the surface of the part occurs as a result of the combined action of micro-cutting processes, chipping of metal particles during repeated deformation of the processed surface areas, their fatigue and destruction, the formation, destruction and removal of secondary structures, and adhesion phenomena. It is noted that the real surface after vibration treatment is a set of roughnesses of a certain size, shape and direction. It is defined that the micro-roughness of the surface of the part during vibration finishing and grinding is formed in the form of traces from numerous impacts of abrasive granules on the surface of the part. The largest value of the granule penetration into the processed surface is determined, that makes it possible to characterize the trace from plastic compression in the zone of collision between the granule and the part. The technique and study of the mechanism of formation of surface microroughness is considered. An expression is determined for the normal component of the impact force, which characterizes the main effect on the mechanism of micro-roughness formation. The value of penetration of the granule into the metal of the part is determined. The study showed that the surface micro-roughness during vibration treatment is formed by impacts of granules on the part at different meeting angles. The traces from action of straight and oblique impacts are established. The average height of micro-roughness is calculated. According to the hodographs, the normal velocities of abrasive granules and parts are determined. The average value of the angle of impact of the granules with the part at any point of the trajectory of their movement is also determined. It was revealed that the velocities of granules and parts change in magnitude and direction during one period of the reservoir oscillation, reaching their limiting values, which are proportional to the reservoir movement velocities. The degree of proportionality is expressed by the similarity coefficient for the granule and the part. The average similarity coefficient was also determined by the points of the hodograph. The average values of the movement velocities of the granule and the part in the reservoir are obtained. The minimum and maximum value of the granule penetration into the surface of the part is established. The formulas for the limiting values of the granule penetration depth are given, taking into account the coefficient of ellipticity. The results of calculations for determining the height of micro-roughness of the processed part surface are presented. A formula is obtained for determining the surface micro-roughness during vibration finishing and grinding processing.Документ Main technological factors determining the efficiency and quality of the vibration process(Національний технічний університет "Харківський політехнічний інститут", 2022) Mitsyk, A. V.; Fedorovich, V. A.; Grabchenko, A. I.The factors that determine the efficiency and quality of vibration treatment are indicated. Characteristic cases of interaction of abrasive granules with the processed surface are noted. The influence of the hardness of the processed part material and the shape of its surface, as well as the influence of chemically active solutions on the efficiency and quality of vibration processing, is substantiated. The characteristics of abrasive granules and their volume ratio with the processed parts are given. It is indicated that the underestimation of the possibilities of vibration processing technologies is explained by their insufficient studies. It has been established that vibration processing, depending on the characteristics and composition of the processing medium, is a mechanical or mechanochemical removal of the smallest particles of metal or its oxides and plastic deformation of microroughness due to mutual collisions of the medium granules with the processed surface, caused by vibrations of the reservoir in which the processing medium and, the processed parts are placed. It is noted that, according to the classification, vibration treatment refers to mechanical processing methods and, in particular, to the group of mechanical-chemical processing methods or to combined methods when chemically active solutions are introduced into the working medium, It is also noted that vibration treatment refers to dynamic, and for technological purposes – to dimensionless processing methods, according to the type of tool used - to the group of processing methods with a free abrasive. It has beene stablished that the efficiency of vibration processing depends on the oscillation modes of the vibrating machine, the mass of the processed parts and abrasive granules, the hardness of the parts material and the shape of their treated surfaces, the characteristics of the abrasive medium, the volume ratio of the parts and abrasive granules, as well as on the composition of the chemically active solution. The characteristic cases of interaction of abrasive granules with the processed surface are given. The situations of the highest processing productivity for performing the operations of vibration grinding, vibration polishing, washing and descaling have been established. It is noted how the hardness of the processed part and the shape of their surface affects the performance and quality of vibration processing operations. The characteristics of the working medium, which affects the efficiency and quality of vibration treatment, are given, including the influence of grain size and hardness of the material of abrasive granules. The volume ratios of abrasive and processed parts are considered. The types of actions on the vibration treatment processes are given.