Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
3 результатів
Результати пошуку
Документ Development and comparative analysis of computer system state identification methods based on ensemble algorithms(Інжиніринг, 2020) Gavrylenko, Svitlana; Sheverdin, IlliaThe scientific novelty of the results obtained consists in creating ensemble methods for classifying the state of a computer system without a teacher and with a teacher. The method based on the "Isolation Forest" algorithm can be used as an express method for analyzing a computer system state. This will allow not only to identify the state of a computer system state, but also to highlight the name of the abnormal processes. This method can also be used to generate labeled data and use it as the source data of the ensemble algorithm with a teacher. The algorithm with a teacher built according to the C4.5 algorithm is more accurate and can be used to refine the result of identifying a computer system state using the method based on the "Isolation Forest" algorithm.Документ Оцінка інформативності та вибір ознак при ідентифікації стану комп'ютерної системи(Національний технічний університет "Харківський політехнічний інститут", 2021) Гавриленко, Світлана Юріївна; Шевердін, Ілля Валентинович; Гейко, Геннадій ВікторовичПредметом статті є дослідження методів визначення інформативності ознак. Метою статті є підвищення якості класифікації стану комп’ютерної системи за рахунок вибору найбільш інформативних ознак. Завдання: дослідити методи вибору оптимальних інформаційних ознак для ідентифікації стану комп’ютерної системи на основі аналізу подій операційної системи Windows. Використовуваними методами є: методи машинного навчання, ансамблеві методи, методи вибору оптимальних інформаційних ознак. Отримано такі результати: виконано аналіз подій операційної системи Windows, досліджено методи вибору оптимальних інформаційних ознак: методи-обгортки (Wrappers), вбудовані методи (Embedded) і методи-фільтри (Filters). Виконано оцінку інформативності та вибір ознак при ідентифікації стану комп’ютерної системи. Для оцінки ефективності вибраних ознак було використано ансамблевий метод класифікації стану комп’ютерної системи на основі беггінгу та дерева рішень J48. Досліджено залежність точності класифікації стану комп’ютерної системи від обраних ознак та визначено набір атрибутів, які забезпечують максимальну точність класифікації стану комп’ютерної системи. Висновки. Наукова новизна отриманих результатів полягає у аналізі подій операційної системи Windows, оцінці їх інформативності та вибору ознак при ідентифікації стану комп’ютерної системи.Документ The ensemble method development of classification of the computer system state based on decisions trees(Національний технічний університет "Харківський політехнічний інститут", 2020) Gavrylenko, Svitlana; Sheverdin, Illia; Kazarinov, MichaelThe subject of this article is exploration of methods for identifying the status of a computer system.The purpose of the article is development of a method for classifying a computer system anomalous state based on ensemble methods. Task: To investigate the usage of algorithms for building decision trees: REPTree, Random Tree, J48, HoeffdingTree, DecisionStump and bagging and boosting decision tree ensembles to identify a computer system anomalous state by analyzing operating system events. The methods used are artificial intelligence, machine learning and ensemble classification methods. The following results were obtained: the methods of identifying the computer systems anomalous state based on ensemble methods were investigated, namely, bagging, boosting, and classifiers: REPTree, Random Tree, J48, HoeffdingTree, DecisionStump to identify a computer system anomalous state. The different classifiers set and classifiers ensembles were developed. Training and cross-validation on each algorithm was performed. The developed classifiers performance has been evaluated. The research suggests an ensemble method ofa computer system state classifying based on the J48 decision tree algorithm. Conclusions.The scientific novelty of the obtained results consists in creating an ensemble method for classifying the state of a computer system based on a decision tree, which makes it possible to increase the reliability and speed of classification.