Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ The method of multi objective synthesis of nonlinear robust control by multimass electromechanical systems(Національний технічний університет "Харківський політехнічний інститут", 2022) Kuznetsov, B. I.; Nikitina, T. B.; Bovdui, I. V.; Voloshko, O. V.; Kolomiets, V. V.; Kobilyanskiy, B. B.Development of the method of multi objective synthesis of nonlinear robust control by multimass electromechanical systems to satisfy various requirements for the operation of multi-mass systems in various modes. Methodology. The problem of multi objective synthesis of nonlinear robust control of multimass electromechanical systems is formulated and the possibility of satisfying various requirements for the operation of such systems in various modes based on the concept of functionally multiple membership of the state vector and the solution of the Hamilton-Jacobi-Isaacs equation is shown. A method for choosing weight matrices with the help the vector of purpose of nonlinear robust control is formed by solving a zero-sum vector antagonistic game has been substantiated and developed. Results. The results multi objective synthesis of nonlinear robust two-mass electromechanical servo systems in which differences requirements for the operation of such systems in various modes were satisfied are given. Based on the results of modeling and experimental studies it is established, that with the help of synthesized robust nonlinear controllers, it is possible to improve of quality indicators of two-mass electromechanical servo system in comparison with the system with standard regulators. Originality. For the first time the method of multi objective synthesis of nonlinear robust control by multimass electromechanical systems to satisfy various requirements for the operation of multimass systems in various modes is developed. Practical value. From the point of view of the practical implementation the possibility of solving the problem of multi objective synthesis of nonlinear robust control systems to satisfy various requirements for the operation of multimass electromechanical systems in various modes is shown.Документ Improving of electromechanical stabilization systems accuracy(Национальный технический университет "Харьковский политехнический институт", 2019) Kuznetsov, B. I.; Nikitina, T. B.; Bovdui, I. V.; Kobilyanskiy, B. B.Improving of accuracy parameters and reducing of sensitivity to changes of plant parameters for nonlinear robust tank main armament guidance and stabilization electromechanical systems based on synchronous motor with permanent magnets and vector control. The method of multiobjective synthesis of nonlinear robust control by nonlinear tank main armament stabilization electromechanical system taking into account the elastic oscillations of the tank gun barrel as a discrete-continuous plant and with parametric uncertainty based on the multiobjective optimization. The target vector of robust control choice by solving the corresponding multicriterion nonlinear programming problem in which the calculation of the vectors of the objective function and constraints is algorithmic and associated with synthesis of nonlinear robust controllers and modeling of the synthesized system for various modes of operation of the system, with different input signals and for various values of the plant parameters. Synthesis of nonlinear robust controllers and non-linear robust observers reduces to solving the system of Hamilton-Jacobi-Isaacs equations. The results of the synthesis of a nonlinear robust tank main armament guidance and stabilization electromechanical systems are presented. Comparison of the dynamic characteristics of the synthesized tank main armament stabilization electromechanical systems showed that the use of synthesized nonlinear robust controllers allowed to improve the accuracy parameters and reduce the sensitivity of the system to changes of plant parameters in comparison with the existing system. For the first time carried out the multiobjective synthesis of nonlinear robust tank main armament stabilization electromechanical systems. Practical recommendations are given onreasonable choice of the gain matrix for the nonlinear feedbacks of the regulator and the nonlinear observer of the tank main armament stabilization electromechanical systems, which allows improving the dynamic characteristics and reducing the sensitivity of the system to plant parameters changing in comparison with the existing system.