Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ Шляхи підвищення ефективності роботи регенеративних теплообмінників скловарних печей(ТОВ "Планета-Прінт", 2020) Кошельнік, Олександр Вадимович; Гойсан, С. Б.Документ Use of a hydrogen metal hydride system to increase glass production efficiency(Інститут проблем машинобудування ім. А. М. Підгорного НАН України, 2019) Chorna, Natalia A.; Koshelnik, Oleksandr V.; Kruhliakova, Olha V.; Dolobovska, Olha V.Today, the most effective means of using the energy potential of the secondary energy resources of industrial enterprises is the use of cogeneration utilization systems. This makes it possible to concurrently obtain both heat and electrical energy, and significantly reduce heat losses. This paper proposes that sheet glass producing enterprises use additional utilization systems for making use of heat from glass furnace gases. The current state of hydrogen use during glass production is analyzed. A scheme of energy technology complex with a hydrogen turbine and a metal hydride system for the combined production of heat and electric energy is developed. A calculation and theoretical study has been conducted to determine the main parameters of the hydrogen heat recovery system in the range of furnace gas temperatures from 523 to 673 K, as well as the efficiency of the system application. Using the developed mathematical model of the processes of heat and mass transfer in metal hydrides, we obtained data regarding the operating parameters of the thermosorption compressor, which allowed us to determine the structural characteristics of the metal hydride system as a whole. As a result of the calculation, we obtained coolant characteristics at hydrogen circuit key points, and determined the hydrogen turbine power. The electric energy produced in it can be used for the electrolyzer of the hydrogen station of an enterprise. The oxygen generated during the electrolysis process is added to the combustion air, which will increase the combustion temperature of the fuel mixture and increase glass furnace efficiency. Thus, a complex of proposed measures for the utilization of the energy potential of glass furnace gases will allow us to increase the energy efficiency of sheet glass production and the competitiveness of glass-producing enterprises.