Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 9 з 9
  • Ескіз
    Документ
    Influence of an excitation source on the power indicators of a linear pulse electromechanical converter of induction type
    (Інститут електродинаміки НАН України, 2021) Bolyukh, V. F.; Shchukin, I. S.
    The purpose of the article is to evaluate the efficiency of an induction-type linear pulse electromechanical converter (LPEC) when operating in shock-power mode and excitation from an alternating voltage source (AVS) in comparison with excitation from a capacitive energy storage (CES). A mathematical model of an induction-type LPEC has been developed both when excited by a unipolar pulse from a CES and from an AVS using lumped parameters of the windings, which takes into account the interrelated electromagnetic, mechanical and thermal processes. It has been found that when the LPEC is excited from the AVS with a voltage frequency of 50 Hz, the electrodynamic force takes on a periodic decaying character with a significant prevalence of positive components of forces over negative ones. The maximum value of the force is much less, and the value of its impulse is much greater than in the LPEC, excited from the CES. With an increase in the frequency of the AVS voltage from 50 to 150 Hz, the highest value of the current density of the inductor winding decreases, and in the armature winding it increases. The greatest values of force and impulse of force are realized at a voltage frequency of 150 Hz. With an increase in the AVS frequency, the relative indicator of the efficiency of the LPEC increases.
  • Ескіз
    Публікація
    Influence of pulse excitation on electromechanical indicators of a linear pulse converter of electrodynamic type
    (Національний гірничий університет, 2020) Bolyukh, V. F.; Kashanskyi, Yu. V.; Shchukin, I. S.
    Purpose. Investigation of the effect of pulsed excitation of the electronic circuit-controlled inductor and armature windings, powered with the capacitive energy storage (CES) source, on the speed and power indicators of a linear pulse electrodynamic converter (LPEC). Methodology. On the basis of the developed numerical model, the influence of pulsed excitation — vibrationally damped, halfwave, aperiodic, and aperiodic with recharge, on the characteristics and performance of LPEC is studied. The mathematical model of the LPEC, using the lumped parameters of the stationary winding of the inductor and the movable winding of the armature, takes into account the interconnected electromagnetic, mechanical and thermal processes, presenting their solutions in a recursive form. Findings. It was found that the pulse excitation of the LPEC insignificantly affects the maximum speed, the pulse of electrodynamic forces (EDF) and the temperature rise of the inductor winding. The highest values of the maximum speed and impulse of an EDF arise upon excitation by a vibrationally damped current pulse, while the smallest ones – upon excitation by an aperiodic pulse. The LPEC excitation by an aperiodic current pulse with recharge allows the use of a reduced charge voltage for rechargeable CES. With a decrease in this voltage and with conservation of the energy of the CES, the amplitude of the EDF decreases by 31.5 %, but due to the delay of electromagnetic processes, the pulse of the EDF increases by 3 %, and the efficiency – by 8.2 %. Originality. A comprehensive criterion for the LPEC efficiency was introduced, which takes into account the amplitude of the excitation current, the mass of the windings, the temperature of the inductor winding, the magnitude of the EDF pulse, the efficiency, and the maximum speed for a given reliability coefficient. Using this criterion, we found that in terms of power and speed indicators, the most efficient is a converter excited by an aperiodic current pulse with recharge, and the quality of work is a converter excited by an aperiodic pulse. Practical value. The influence of the width of the copper bus and the corresponding axial heights of the windings of the inductor and the armature on the speed and power performance of the LPEC using vibration-damping, half-wave, aperiodic and aperiodic with recharge current pulses is established.
  • Ескіз
    Публікація
    Електромеханічний пристрій для ударно-статичного пресування керамічних порошкових матеріалів
    (ДП "Український інститут інтелектуальної власності", 2022) Болюх, Володимир Федорович; Кашанський, Юрій Володимирович; Щукін, Ігор Сергійович; Щукіна, Людмила Павлівна
    Електромеханічний пристрій для ударно-статичного пресування керамічних порошкових матеріалів містить обмотку індуктора 1, штовхач 2 і пуансон 3, які виконані у вигляді єдиного цілого, та циліндричну матрицю 4, які коаксіально встановлені в циліндричному корпусі 5. Всередині циліндричної матриці 4 розташований керамічний порошковий матеріал 6, з яким зверху контактує пуансон 3, а знизу контактує виступ основи 7. Обмотка індуктора 1 своєю нижньою торцевою стороною контактує з дисковим електропровідним якорем 8, а своєю верхньою торцевою стороною контактує з феромагнітним диском 9. Циліндричний корпус 5 виконаний з двох частин 5а та 5b, які з'єднані між собою за допомогою храпового механізму 12, що забезпечує переміщення верхньої частини 5b вниз відносно нижньої 5а. Обмотка індуктора приєднана до магнітно-імпульсної установки 10, яка підключена до джерела однофазного змінного струму 13 з напругою 1u. Вона включає однофазний підвищувальний трансформатор 14, первинна обмотка якого підключена до джерела 13, а до вторинної обмотки якого підключено два електричних кола збудження, які паралельно підключені до рухливих струмовводів а, b обмотки індуктора 1. Перше електричне коло збудження підключене до зовнішніх виводів Т1 і Т2 вторинної обмотки трансформатора 14 на напругу 2u, а друге електричне коло збудження підключене до зовнішнього Т1 і додаткового Т3 виводів вторинної обмотки трансформатора 14 на напругу. Пристрій дозволяє підвищити ефективність роботи за рахунок комбінації циклічного ударного і статичного пресування керамічних порошкових матеріалів.
  • Ескіз
    Публікація
    Електромеханічний імпульсний пристрій для ударно-статичного двостороннього пресування керамічних порошкових матеріалів
    (ДП "Український інститут інтелектуальної власності", 2021) Болюх, Володимир Федорович; Кашанський, Юрій Володимирович; Щукін, Ігор Сергійович; Щукіна, Людмила Павлівна
    Заявлений винахід належить до пристроїв формування керамічних виробів, зокрема до пристроїв магнітно-імпульсного пресування деталей з керамічних порошкових матеріалів. Електромеханічний імпульсний пристрій для ударного двостороннього пресування керамічних порошкових матеріалів містить коаксіально встановлені один навпроти одного на вертикальній осі верхній 1 та нижній 2 два напівкорпуси. Кожен напівкорпус виконаний у формі стакана з феромагнітного матеріалу. В верхньому напівкорпусі 1 коаксіально встановлені дискова обмотка індуктора 3, штовхач 4 і пуансон 5, які виконані як одне ціле. В нижньому напівкорпусі 2 коаксіально встановлені дискова обмотка індуктора 6, штовхач 7 і пуансон 8, які виконані у вигляді єдиного цілого. Обмотка 3 розташована навпроти дискового електропровідного якоря 10, який прикріплений до плоскої сторони штовхача 4, а обмотка 6 розташована напроти дискового електропровідного якоря 12, який прикріплений до плоскої сторони штовхача 7. В радіальному пазу 13 на кінці циліндричного елемента 16 верхнього напівкорпусу 1 розташований з можливістю взаємного аксіального переміщення радіальний виступ 14 на кінці циліндричного елемента 26 нижнього напівкорпусу 2. Навпроти радіального паза 13 верхнього напівкорпусу 1 та радіального виступу 14 нижнього напівкорпусу 2 розташована циліндрична феромагнітна матриця 15, всередині якої знаходиться керамічний порошковий матеріал 16. В зовнішньому радіальному пазу матриці 15 розташована обмотка електромагніта 17, а у внутрішньому радіальному пазу циліндричної матриці розташована обмотка для нагрівання 18 керамічного порошкового матеріалу 16. Обмотка для нагрівання 18 керамічного порошкового матеріалу 16 за допомогою тиристора VS1 приєднана до джерела живлення постійного струму 19, обмотка електромагніта 17 за допомогою тиристора VS2 приєднана до джерела живлення 1.7. Між джерелом живлення постійного струму 19 та ємкісним накопичувачем енергії С розташований тиристор для заряду VS0. В розрядному колі ємнісного накопичувача енергії С з тиристором VS3 дискові обмотки індуктора 3 і 6 в напівкорпусах 1 і 2 та обмотка електромагніта 17 електрично з'єднані між собою послідовно та шунтовані зворотнім випрямним діодом VD. Застосування цього пристрою дозволить підвищити ефективність електромеханічного імпульсного пристрою, забезпечить ударне і статичне двостороннє пресування керамічних порошкових матеріалів, збільшить величину і час дії електромагнітної сили тяжіння та нагрівання порошкового матеріалу до, підчас і після ударного пресування.
  • Ескіз
    Публікація
    Електромеханічний імпульсний пристрій електромагнітно-індукційного типу для ударного пресування керамічних порошкових матеріалів
    (ДП "Український інститут інтелектуальної власності", 2020) Болюх, Володимир Федорович; Кашанський, Юрій Володимирович; Щукін, Ігор Сергійович; Щукіна, Людмила Павлівна
    Винахід належить до пристроїв формування керамічних виробів, зокрема до пристроїв магнітно-імпульсного пресування деталей з порошкових матеріалів. Електромеханічний імпульсний пристрій електромагнітно-індукційного типу для ударного пресування керамічних порошкових матеріалів містить обмотку індуктора 1, штовхач 2, пуансон 3 і циліндричну матрицю 4, які встановлені уздовж вертикальної осі 5. Всередині циліндричної матриці 4 розташований керамічний порошковий матеріал 6, з верхньою стороною якого контактує пуансон 3, а з нижньою стороною контактує виступ 7а основи 7. Обмотка індуктора 1 намотана на циліндричну втулку 8. Обмотка 1 нижньою торцевою стороною контактує з дисковим електропровідним якорем 9, прикріпленим до плоскої сторони штовхача 2. А верхньою торцевою стороною обмотка індуктора 1 контактує з дисковим феромагнітним якорем 10. Циліндрична матриця 4 встановлена з можливістю вертикального переміщення за рахунок того, що її нижня торцева сторона взаємозв'язана з основою 7 за допомогою пружини 11, а верхня торцева сторона звернена до упорного майданчику 2а, виконаного на боковій конусоподібній стороні 2б штовхача 2. Між циліндричною матрицею та упорним майданчиком 3а є проміжок 12, висота якого h2 менша за величину робочої ходи пуансона h1. Пружина 11 встановлена в пазу 7б основи 7. Обмотка індуктора 1, електропровідний якір 9 і матриця 4 розміщені в циліндричному корпусі 13, який прикріплений до основи 7. У верхній частині 13а циліндричного корпусу 13 з можливістю аксіального переміщення встановлений дисковий феромагнітний якір 10. Зазначене виконання пристрою забезпечує збільшення і більш рівномірний силовий вплив при зниженні магнітних полів розсіювання.
  • Ескіз
    Документ
    Сравнительный анализ силовых и скоростных показателей линейных импульсных электромеханических преобразователей электродинамического и индукционного типов
    (Інститут електродинаміки НАН України, 2019) Болюх, Владимир Федорович; Кашанский, Юрий Владимирович; Щукин, Игорь Сергеевич
    Целью статьи является определение влияния геометрических параметров обмоток индуктора и якоря на силовые и скоростные показатели линейных импульсных электромеханических преобразователей (ЛИЭП) индукционного и электродинамического типов. Разработана цепная математическая модель ЛИЭП, описывающая взаимосвязанные электрические, магнитные, механические и тепловые процессы. Установлены геометрические соотношения обмоток индуктора и якоря (аксиальная высота, количество слоев и витков медной шины), при которых обеспечиваются максимальные силовые и скоростные показатели указанных преобразователей. Силовые и скоростные показатели преобразователя электродинамического типа выше, чем у преобразователя индукционного типа, однако конструктивно он является более сложным. В наиболее эффективном преобразователе индукционного типа возникают значительные потери в обмотке индуктора, а потери в обмотке якоря незначительны, что обусловливает относительно низкий КПД - 10,9 %. В наиболее эффективном преобразователе электродинамического типа потери в обмотке индуктора уменьшаются, а в обмотке якоря возрастают, что приводит к повышенному КПД - 20,0 %. Библ. 10, рис. 4.
  • Ескіз
    Документ
    Порівняльний аналіз конструктивних типів комбінованих лінійних імпульсних електромеханічних перетворювачів
    (Інститут електродинаміки НАН України, 2018) Болюх, Володимир Федорович; Кочерга, Олександр Іванович; Щукін, Ігор Сергійович
    Розроблено комп’ютерну модель лінійного імпульсного електромеханічного перетворювача (ЛІЕП) циліндричної конфігурації, яка описує електромагнітні та електромеханічні процеси з просторово-розподіленими параметрами. Виконано аналіз конструктивних типів, призначених для утворення механічних імпульсів комбінованих ЛІЕП, якорі яких виконано у вигляді мідного диску та/або багатовиткової котушки, що послідовно або паралельно з’єднана з індуктором. Встановлено закономірності протікання електромеханічних процесів та розподіл магнітного поля в активній зоні конструктивних типів комбінованих ЛІЕП. З використанням критерію ефективності, який у відносному вигляді враховує електричні, силові та польові(індукція магнітного поля розсіювання) показники та надійність, показано, що за всіма варіантами стратегії оцінки найбільш ефективним є конструктивний тип ЛІЕП з переднім і заднім електропровідними якорями та котушковим якорем, який послідовно з’єднаний з індуктором.
  • Ескіз
    Документ
    Влияние формы импульса возбуждения на силовые и скоростные показатели линейных ударных электромеханических преобразователей индукционного и электродинамического типов
    (Национальный технический университет "Харьковский политехнический институт", 2020) Болюх, Владимир Федорович; Щукин, Игорь Сергеевич
    На основе математической модели, учитывающей взаимосвязанные электрические, магнитные, механические и тепловые процессы, исследовано влияние колебательно-затухающего, однополупериодного и апериодического импульсов возбуждения на показатели линейных ударных электромеханических преобразователей (ЛУЭП) индукционного и электродинамического типов в режимах холостого хода, нагрузки и торможения. Показано, что наиболее высокие скоростные показатели возникают в режиме холостого хода, когда обмотка якоря разгоняется без исполнительного элемента, а наиболее высокие силовые показатели – в режиме торможения, при котором якорь неподвижен. Установлено, что наибольшую скорость (18,95 м/с) обеспечивает ЛУЭП электродинамического типа при возбуждении однопополупериодным и колебательно-затухающим импульсами в режиме холостого хода. Наибольший КПД (29,2 %) имеет ЛУЭП электродинамического типа при возбуждении однополупериодным импульсом в режиме холостого хода. Наибольшую величину импульса электродинамических усилий (19,2 Н∙с) развивает ЛУЭП индукционного типа в режиме торможения. Наибольшее превышение температуры обмотки индуктора (1,7 К) происходит в ЛУЭП индукционного типа в режиме холостого хода, а наибольшее превышение температуры обмотки якоря (0,7 К) – в ЛУЭП электродинамического типа в режиме торможения.
  • Ескіз
    Документ
    Исследование линейных импульсных электромеханических преобразователей комбинированного типа
    (Одеський національний політехнічний університет, 2018) Болюх, Владимир Федорович; Кочерга, Александр Иванович; Месенко, Александр Петрович; Щукин, Игорь Сергеевич
    Установлены особенности протекания электромагнитных процессов и определены электрические, магнитные и силовые показатели линейных импульсных электромеханических преобразователей комбинированного типа, включающих катушечный, ферромагнитный и один или два электропроводящий якоря. Выполнен сравнительный анализ различных преобразователей комбинированного типа с использованием критерия эффективности, который в относительном виде учитывает электрические, силовые и полевые показатели.