Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Analysis of optimization criteria for the process of switch displacement in a DC railroad turnout
    (PC Tесhnology сеntеr, 2019) Buriakovskyi, S. G.; Smirnov, V.; Asmolova, L. V.; Obruch, I. V.; Rafalskyi, O.; Maslii, Ar. S.
    This paper reports a study into the dynamics of displacing a railroad turnout's switches with a direct start of electric motor and a controlled DC electric drive in the MATLAB environment. The emphasis of simulation was the investigation of processes taking place in the kinematic links of a railroad turnout in the dynamics of its switch displacement. The estimation was based on the optimization criteria for a switch displacement process: the pulse of the impact of a switch against the frame rail, elasticity force in the working rod and a switch turning time. The result of the simulation of a non-controlled electric drive in a railroad turnout of switches has revealed that the values of these parameters are unsatisfactory. Mathematical models of the regulated electric drive for a railroad switch turnout were considered as two-mass electromechanical systems with subordinate regulation of basic coordinates and based on the principle of modal control. The results from mathematical modelling of the switch turning process convince that the numerical values of the optimization criteria for a regulated turning process are improved. Increasing the time of a regulated turning by up to 6 % of direct start results in a decreased impact in the kinematic links. Under the assumption of eliminating a technological gap in the reducer, a decrease in the impact of switches at the turning onset amounts to 6–8 %. At the same time, comparison of impacts at the onset of switch turning, when taking into consideration a technological gap in the reducer, as well as without it, shows a decrease in the elastic force amplitude by 250 %. The impact (a switch momentum pulse) could be reduced by 20–24 % upon turning completion. Our analysis of optimization criteria for the switch displacement process has demonstrated efficiency of the regulated electric drive compared to the direct start of an electric motor. That makes it possible not only to extend the operational functionality of a railroad switch turnout, but also to reduce costs for the current technical inspection, repairs in general, as well as to prolong the inter-repair period.
  • Ескіз
    Документ
    Development and study of a microprocessor automatic control system for a mono-switch tie type with a linear inductive electric motor and a discrete speed controller
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Buriakovskyi, S. G.; Asmolova, L. V.; Maslii, An. S.; Maslii, Ar. S.; Obruch, I. V.
    The article is devoted to the development of the microprocessor automatic control system for a gearless controlled electric drive of a mono-switch tie based on a linear inductor electric motor. This solution provides control the position of the switch point, to carry out the transfer process with a smooth drive of shanks to the frame rail, to protect electric motor elements from overloads. Goal. Development and study of the behavior of microprocessor automatic control system for mono-switch tie type with linear inductive electric motor and discrete PID speed controller which coefficients are adjusted according to Chien-Hrones-Reswick method to meet modern traffic safety requirements and improve operational reliability factors. Methodology. On the basis of electric drive theory, a kinematic line of a mono-switch tie type with nonlinear friction characteristic is presented. Using differential equation theory and Laplace transformation, a mathematic description of a linear inductor electric motor has been made. Using the z-transform method, a difference equation for describing a discrete PID speed controller is obtained, the coefficients of which are derived using the Chien-Hrones-Reswick method. A simulation mathematical model of the electric drive mono-switch tie type as the microprocessor automatic control system with linear inductive electric motor and discrete PID speed controller and nonlinear friction characteristic was built in MATLAB. Results. Simulation modelling of a mathematical model of the microprocessor automatic control system of the electric drive mono-switch tie type with the linear inductive electric motor and discrete PID speed controller and nonlinear friction characteristic have been developed and performed. Studies of dynamics of switch point movement have shown that, a drive time of less than 0.7 s at a constant speed motor armature of 0.2 and 0.3 m/s provides to meet modern requirements for railway switch points. The application of discrete PID speed controller has shown improved dynamics of switch point. Originality. First for the electric drive of the mono-switch tie type with linear inductive electric motor a mathematical model of the discrete PID speed controller and nonlinear friction characteristic as an object of speed control of switch point movement, has been developed. Practical value. Mathematical model of a railway track switch of the mono-switch tie type with linear inductive electric motor and discrete PID speed controller has been developed to carry out the control of the position of the switch point, process with a smooth drive them to the frame rail, to protect electric motor elements from overloads.