Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ Free vibration analysis of FGM shell with complex planform in thermal environments(Wydawnictwo Politechniki Łódzkiej, 2019) Awrejcewicz, Jan; Kurpa, Lidiya; Shmatko, TetyanaSummary. In the present study free vibrations of FGM shallow shells of an arbitrary planform in thermal environment are investigated via R-functions method (RFM). First-order shear deformation theory of shallow shells is employed. Material properties are assumed to be temperature-dependent and expressed as nonlinear functions of temperature. The generic material properties are not only functions of temperature, but also functions of thickness direction. It is supposed that material properties vary through thickness according to a power-law distribution of the constituent’s volume fraction. The developed method is based on the combined applications of the R-functions theory, variational Ritz’s method. A comparison of the obtained results with available ones is carried out for rectangular plates and shallow shells. Vibration of shell panels with complex planform and different boundary conditions including mixed ones are studied. Solution structures and related admissible functions for shells with complex planform have been constructed by the R-functions theory. The effect of the temperature rise, geometry of the shell, material properties and constituent volume fraction index is examined.Документ Nonlinear vibrations of functionally graded shallow shells of a complex planform in thermal environments(CongressLine Ltd., Hungary, 2017) Awrejcewicz, Jan; Kurpa, Lidiya; Shmatko, TatianaGeometrically nonlinear vibrations of FGM shallow shells of an arbitrary planform subjected to thermal environment are investigated with the use of R-functions theory and variational methods. Nonlinear firstorder shear deformation shallow shells are employed. Material properties are assumed to be temperaturedependent and varying along the thickness direction accordingly to Voigt’s law. The developed method is based on the combined applications of R-functions theory, variational Ritz’s method, procedure by Bubnov-Galerkin, and Runge-Kutta’s approach. The effect of the temperature rise, geometry of the shell, and constituent volume fraction index is examined. A comparison of the obtained results with available ones is also carried out for rectangular plates and shallow shells.