Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Structural and functional simulation of interaction in the field of aviation safety by using matrices
    (World Academy of Materials and Manufacturing Engineering, 2019) Drobakha, Hr.; Neklonskyi, I.; Kateshchenok, A.; Sobyna, V.; Taraduda, D.; Borysova, L.; Lysachenko, I.
    The conducted research was aimed at constructing a structural and functional model for the interaction of bodies providing aviation safety during crisis management. Design/methodology/approach: The methods of mathematical simulation and the graph theory, the methods comparison and formalization have been applied to study the process of interaction between the bodies assuring aviation safety. Using methods of the linear algebra allowed constructing a mathematical model for the functional structure of the interaction process that contains description of this process by the main methods of interaction. Findings: It has been proved that the interaction process has a certain functional properties that reflect the functional relations between the modes of violator actions, the modes of using the response forces and the modes of interaction. A structural and functional model of interaction in semantic, algebraic forms and in the form of graphs has been created. using typical operations with incidence matrices, the possibility of obtaining the physical interpretation of the simulation results within the introduced algebra of functional structure models has been justified. Research limitations/implications: Discusses interactions between the bodies that assure aviation safety and at the same time, the possibility of a crisis situation is taken into account. Practical implications: The developed models allow reflecting the current state of the functional system and the elements of the process of interaction rather completely. It makes a structural and functional analysis of interaction possible and allows defining the priority directions of its organization, simulating the options and methods of interaction in solving relevant tasks by the bodies that assure aviation safety. Originality/value: That allowed not only describing the formal relations between the methods of interaction and interacting units, between the interacting units and the modes of violator actions, but also considering the influence of the interaction process on the current state of the functional system.
  • Ескіз
    Документ
    Studying the photocatalytic oxidation of hydroxybenzene in aquatic medium on the photocatalizers SnO₂, ZnO, TiO₂
    (Технологический центр, 2018) Deineka, D. M.; Kobziev, Oleksandr; Avina, Svitlana; Grin, Svitlana; Deyneka, Viktoriya; Taraduda, Dmytro; Sobina, Vitaliy
    This paper reports results of research into photocatalytic activity of oxides SnO₂, ZnO, TiO₂ in the process of hydroxybenzene degradation in an aqueous medium with the separately considered properties of the allotrope modifications of titanium oxide (IV): anatase and rutile. The relationship has been substantiated between a decrease in the value for the width of the restricted area and an increase in the photocatalytic activity of the examined oxides. The effect has been established of the organization of agitation on an increase in the degree of hydroxybenzene degradation in an aqueous medium, which is 10‒15 % on average. We have studied the influence of ratio of anatase to rutile in a photocatalyst on the hydroxybenzene degradation efficiency. It has been shown that the results obtained in the course of the study are consistent with data from the scientific literature, while opening up additional possibilities to increase the degree of hydroxybenzene oxidation in a joint application of anatase and rutile. It was established that the greatest degree of oxidation with and without agitation at an irradiation time of 60 minutes can be achieved at the content ratio of anatase to rutile of 75/25 % and is 23 % and 37 %, respectively. The use of such a composition makes it possible to increase the degree of hydroxybenzene oxidation in an aqueous medium by 11‒18 %, which is 1.5‒1.9 times larger in comparison with pure rutile and anatase. The results obtained led to the conclusion on that in order to reduce the time required to achieve the maximal indicators for the process of hydroxybenzene degradation, it is necessary to increase the ratio of the irradiated surface to the height of the device and to increase the Re number of the agitation process. Based on the obtained experimental data, we have established the optimum composition of a photocatalyst, which makes it possible to reach the maximal degree of hydroxybenzene recovery from solution.