Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
7 результатів
Результати пошуку
Документ Resources redistribution method of university e-learning on the hyperconvergent platform(National Aerospace University n. a. N. E. Zhukovsky "KhAI", 2018) Merlak, V.; Kuchuk, N. G.; Shmatkov, S.; Nechausov, A.In this article a method of constructing a graph model of university e-learning functioning process, deployed on a hyperconvergent platform, proposed. The method is based on problems and objectives of the system structure analysis. The created graph considers available e-learning resources.Документ Метод перерозподілу ресурсів університетської системи e-learning на гіперконвергентній платформі(Національний аерокосмічний університет ім. М. Є. Жуковського "Харківський авіаційний інститут", 2019) Кучук, Ніна Георгіївна; Мерлак, Вікторія ЮріївнаУ зв'язку з популяризацією використання IT-технологій традиційні методи навчання все частіше змінюються підходами електронного навчання. E-learning – це система навчання за допомогою інформаційних та електронних технологій. E-learning на гіперконвергентній платформі можна розглядати як складну організаційну ієрархічну систему, яка у статті розглядається як певний математичний об'єкт. Проте ресурси системи e-learning обмежені та для її успішної реалізації існує потреба забезпечити її максимальне використання на всіх рівнях системи. Отже, як суттєвий елемент всієї системи, має бути швидкий перерозподіл ресурсів університетської системи e-learning на гіперконвергентній платформі. Автори статті проаналізували існуючі проблеми систем з ієрархічною структурою та можливі вирішення цих проблем. В роботі розглянуто сукупність цілей та завдань, що стоять перед керівними органами ієрархічної системи та представлено у вигляді набору графів системних цілей та завдань. Було встановлено, що процесі досягнення основної мети системи виникають зовнішні обурення, які мають переважно ситуаційний характер, а не стохастичний. І тому перед керівними органами управління існує безліч об'єктів і завдань з усунення відхилень. На верхньому рівні управління ієрархічної системи – управління гіперконвергентной структурою, на нижньому рівні управління – управління віджетами e-learning. Предметом дослідження є електронні освітні ресурси університетського e-learning. Метою статті є розробка методу швидкого перерозподілу ресурсів електронного навчання на гіперконвергентній платформі. Висновки. У статті запропоновано метод побудови графічної моделі процесу функціонування університетського e learning, розгорнутого на гіперконвергентній платформі, який базується на проблемах та цілях аналізу структури системи. Було створений граф узгоджувальних цілей та завдань, який розглядає доступні навчальні ресурси. Також було запропоновано метод розподілу ресурсів різних типів. Для оцінки ефективності процесу розподілу ресурсів було обрано критерій "обґрунтованість" та розраховано імовірнісний показник.Документ Моделювання інформаційної системи e-learning з використанням генетичних алгоритмів(ФОП Петров В. В., 2018) Шматков, С. І.; Кучук, Ніна Георгіївна; Донець, В. В.В статті розглядається модель інформаційної системи e-learning. Мета статті – розробка моделі інформаційної системи e-learning, в якій для пошуку оптимальної структури буде використано апарат генетичних алгоритмів. Базою для створення програмної моделі є математична модель інформаційних взаємозв’язків системи електронного навчання, розгорнутої на гіперконвергентному сервері. Результати. Представлено розроблений програмний комплекс із поясненням запуску при наявності виконавчого файлу. Наведено інтерфейс використання програми відповідними зображеннями. Також надано типовий алгоритм використання програми із вводом початкових даних, збереженням їх у базы даних. Для синтезу інформаційної системи e-learning було досліджено переваги та недоліки генетичного алгоритму. В результаті виведені переваги та недоліки притаманні створеному алгоритму, які також притаманні генетичним алгоритмам взагалі. Висновки. Розроблена програма дозволить підвисити ефективність використання базової гіперконвергентної мережі, а, отже, і підвисити якість функціонування системи e-learning в цілому. Це є необхідною складовою створення такої системи в умовах обмеженого бюджету університету.Документ Модель інформаційної структури гіперконвергентної системи підтримки електронних обчислювальних ресурсів університетської е-learning(ФОП Петров В. В., 2018) Шматков, С. І.; Кучук, Ніна Георгіївна; Донець, В. В.В статті наведено результати розробки математичної моделі інформаційної структури гіперконвергентної системи підтримки електронних обчислювальних ресурсів університетської e-learning. Модель враховує особливості університетської e-learning, дозволяє встановити інформаційні взаємозвязки між складовими системи та провести аналіз гіперконвергентної базової мережі. На базі розробленої моделі можна провести моделювання процесу функціонування e-learning, результатами якого повинні стати чисельні значення пропускної здатності мережі: навантаження на канали зв'язку і структуроутворююче обладнання, інтенсивності потоків даних і запитів, що надходять на вузли мережі.Документ Method of building the semantic network of distributed search in e-learning(Харківський національний університет радіоелектроніки, 2017) Kuchuk, N. G.; Artiukh, R. V.; Nechausov, A. S.The subject matter of the article is semantic networks of distributed search in e-learning. The goal is to synthesize a decision tree and a stratified semantic network that allows network intelligent agents in the e-learning to construct inference mechanisms according to the required attributes and specified relationships. The following results are obtained. The model of the base decision tree in e-learning is suggested. To simulate the decision tree in e-learning, the logic of predicates of the first order was used, which enabled making calculations both at the nodes of the tree and at its edges, and making decisions based on the results of calculations; applying partitioning operations to select individual fragments; specifying the solutions with further expanding the inference upper vertices; expanding the multi-level model vertically and horizontally. At the first stage of the model formalization, the graph of the base decision tree was constructed, whose nodes represent a substructure capable of performing an autonomous search subtask. The second stage is filling the base tree with semantic information and organizing its interaction with network intelligent agents. To provide the tree branches of decisions in e-learning with information, the process of stratified expansion of the base decision tree was suggested where the components of the decision node were detailed and the links among the received sub-units were established both on the horizontal and on the vertical levels. It is shown that in order to establish a set of goals and search problems on the studied structure, it suffices to determine: the graphs of goals and search problems for each node type; a set of edges that determine the dependence of the execution of search targets for the nodes that are not of the same type; a set of pointers that establish probable relationships for redistributing resources in accordance with the requirements of intelligent agents; communication mapping. The developed mathematical model of the base decision tree enabled a stratified expansion. Determining intensions and extensions allowed stratified semantic networks to be used for searching. Conclusions. The method of synthesizing a decision tree and a stratified semantic network is suggested; this method enables considering them as closely interrelated ones in the context of distributed search in e-learning. As a result, the process of searching and designing inference mechanisms can be formalized by the network intelligent agents according to the required attributes and given relationships.Документ Метод вибору оптимального плану виконання транзакцій e-learning(ФОП Петров В. В., 2017) Кучук, Ніна ГеоргіївнаРозроблено математичну модель планування виконання транзакцій e-learning на протязі заданого інтервалу часу. На її основі сформульовано задачу вибору оптимального плану зі множини допустимих за критерієм мінімізації обчислювального ресурсу.Документ Математична модель процесу оперативного перерозподілу обчислювальних ресурсів в гіперконвергентному середовищі(Харківський університет Повітряних Сил ім. Івана Кожедуба, 2015) Кучук, Ніна Георгіївна; Нечаусов, С. М.У статті запропонована математична модель процесу оперативного перерозподілу ресурсів, що орієнтована на гіперконвергентну архітектуру базового програмно-апаратного середовища. Модель зорієнтована на середовище обслуговування електронних освітніх ресурсів. Модель враховує територіальну розподіленість необхідних освітніх ресурсів, ієрархію органів управління та пріоритетність завдань. Перерозподіл ресурсів орієнтований на виконання цілей і завдань e-learning при виникненні непередбаченої ситуації.