Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Mathematical model of mechanical subsystem of traction electric drive of an electric locomotive
    (Volodymyr Dahl East Ukrainian National University, 2021) Goolak, S.; Sapronova, S.; Tkachenko, V.; Riabov, Ie.; Overianova, L.; Yeritsyan, B.
    The mathematical model of the mechanical subsystem of the traction electric drive of the four-axle section of the locomotive is developed in the article. The peculiarity of the model is taking into account the interconnected vertical oscillations of the locomotive and torsional oscillations in traction transmission and the influence of the anti-discharge device on the processes in the traction electric drive. This allows taking into account the relationship of oscillations of the crew of the locomotive, which have a significant impact on the processes in the electrical part of the traction drive. The model describes the oscillations of the locomotive body, two carts, four wheel pairs, traction motors and gearboxes. When developing the model, the assumption of linear dependence of stiffness and damping coefficients on displacements and velocities is accepted. Coupling of a wheel with a rail is described by means of the approximated dependence. The oscillations of the rails and the bases of the rail track are introduced into the model. As perturbation for vertical oscillations the roughness of a rail track is accepted. The model takes into account the influence of traction force and vertical oscillations of the crew on the unloading of the axles of the locomotive. This will allow us to study the processes of realization of the locomotive's maximum traction forces in the traction mode and in the mode of electrodynamics braking. The use of the developed mathematical model of the mechanical subsystem will allow taking more fully into account the mutual influence of electrical processes and mechanical oscillations on each other, which will increase the accuracy of modeling. The model can be used for research of freight electric locomotives such as VL10, VL11, VL82, VL80, 2EL4, 2EL5 in order to further improve their traction electric drives, in particular, to determine the rational modes of application of the anti-unloading device in traction and braking modes. Further application of the mathematical model is possible to assess the performance of the traction drive and the locomotive in general in the study of modern traction drives, in particular, asynchronous, the use of which is possible on the above locomotives.
  • Ескіз
    Документ
    Improvement of the model of power losses in the pulsed current traction motor in an electric locomotive
    (ПП "Технологічний Центр", 2020) Goolak, S. O.; Sapronova, S. Yu.; Tkachenko, V. P.; Riabov, Ie. S.; Batrak, Ye. O.
    When studying transients in pulsed current traction motors, it is important to take into consideration the eddy and hysteresis losses in engine steel. Magnetic losses are a function of the magnetization reversal frequency, which, in turn, is a function of the engine shaft rotation frequency. In other words, magnetic losses are a function of time. Existing calculation procedures do not make it possible to derive the instantaneous values of magnetic losses as they are based on determining average losses over a period. This paper proposes an improved model of magnetic losses in the steel of a pulsed current traction motor as a function of time, based on the equations of specific losses. The adequacy criteria of the procedure for determining magnetic losses in electrical steel have been substantiated: the possibility to derive instantaneous values of magnetic losses in the magnetic material as a function of time; the possibility of its application for any magnetic material; and the simplicity of implementation. The procedure for determining magnetic losses in the steel of a pulsed current traction motor has been adapted by taking into consideration the magnetic properties of steel and the geometry of the engine’s magnetic circuit. In order to determine the coercive force, the coefficient of accounting for the losses due to eddy currents, as well as the coefficient that considers the losses on hysteresis, the specifications’ characteristics of specific losses in steel have been approximated using the pulsed current traction motor as an example. The simulated model of magnetic losses by the pulsed current traction motor has demonstrated the procedure for determining average magnetic losses and time diagrams of magnetic losses. The proposed model for determining magnetic losses could be used for any magnetic material and any engine geometry under the condition of known material properties and the characteristics of change in the magnetic flux density in geometry.
  • Ескіз
    Документ
    Determination of inductances for pulsating current traction motor
    (РС Tесhnology сеntеr, 2021) Goolak, S. O.; Tkachenko, V. P.; Sapronova, S. Yu.; Spivak, A. N.; Riabov, Ye. S.; Ostroverkh, O. O.
    The object of research is a pulsating current traction motor. To improve the accuracy of its mathematical model, it is necessary to use the values of the parameters that are determined in experimental studies of the electric motor. In particular, it is important to use in the model of the electric motor inductance obtained experimentally. A method is proposed for calculating the inductance of the armature winding, main poles, additional poles and compensation winding and the total inductance of the traction motor armature circuit. The calculations are based on the results of the indirect inductance measurement method, in which the electrical values of various modes of power supply of the electric motor windings are directly measured, and the inductances are determined by auxiliary calculations. The inductances of the traction motor armature circuit have a non-linear dependence on the current flowing through them. The main difference of the study is that the measurements of the electrical parameters required for calculating the inductance are carried out over the entire range of operating currents of the windings. The essence of the proposed technique is to measure the active power in the armature winding, the winding of the main and additional poles, and the compensation winding, as well as in the armature circle as a whole when they are supplied with alternating current. According to the obtained values of active power losses and phase displacement, the corresponding reactive power losses are determined, with the help of which the inductances of the motor windings are calculated. Approbation of the methodology for calculating the conduction inductance for an electric motor of a pulsating current NB-418K6 (country of origin Russia), is used on electric locomotives of the VL80T and VL80k series (country of origin Russia). A scheme for measuring electrical parameters necessary for calculating inductance is proposed. The graphical dependences of the inductance on the armature current, built on the basis of calculations, confirmed the hypothesis about the nonlinear dependence of these inductances on the armature current. For further application of the results obtained in the simulation of the operation of the traction electric motor NB-418K6, a polynomial approximation of the total inductance of the armature circuit was performed.