Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Algebraization in stability problem for stationary waves of the Klein-Gordon equation
    (Харківський національний університет імені В. Н. Каразіна, 2019) Goloskubova, Nataliia; Mikhlin, Yuri V.
    Nonlinear traveling waves of the Klein-Gordon equation with cubic nonlinearity are considered. These waves are described by the nonlinear ordinary differential equation of the second order having the energy integral. Linearized equation for variation obtained for such waves is transformed to the ordinary one using separation of variables. Then so-called algebraization by Ince is used. Namely, a new independent variable associated with the solution under consideration is introduced to the equation in variations. Integral of energy for the stationary waves is used in this transformation. An advantage of this approach is that an analysis of the stability problem does no need to use the specific form of the solution under consideration. As a result of the algebraization, the equation in variations with variable in time coefficients is transformed to equation with singular points. Indices of the singularities are found. Necessary conditions of the waves stability are obtained. Solutions of the variational equation, corresponding to boundaries of the stability/instability regions in the system parameter space, are constructed in power series by the new independent variable. Infinite recurrent systems of linear homogeneous algebraic equations to determine coefficients of the series can be written. Non-trivial solutions of these systems can be obtained if their determinants are equal to zero. These determinants are calculated up to the fifth order inclusively, then relations connecting the system parameters and corresponding to boundaries of the stability/ instability regions in the system parameter place are obtained. Namely, the relation between parameters of anharmonicity and energy of the waves are constructed. Analytical results are illustrated by numerical simulation by using the Runge-Kutta procedure for some chosen parameters of the system. A correspondence of the numerical and analytical results is observed.
  • Ескіз
    Документ
    Дослідження стійкості нормальних форм коливань в деяких суттєво нелінійних системах
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Голоскубова, Наталія Сергіївна; Міхлін, Юрій Володимирович
    Стійкість нормальних форм коливань аналізується за допомогою двох підходів. Перший з них – це так званий метод алгебраїзації за Айнсом, коли обирається нова незалежна змінна, пов’язана з розв’язком, що розглядається. Тоді рівняння в варіаціях перетворюється в рівняння з особливими точками. Проблема отримання розв’язків, що відповідають границям між областями стійкості / нестійкості, в цьому випадку зводиться до проблеми отримання розв’язків, що мають сингулярності в цих особливих точках. Такі розв’язки можна отримати у вигляді степеневих рядів, коефіцієнти яких задовольняють системі однорідних лінійних алгебраїчних рівнянь. Умова існування нетривіальних розв’язків подібних систем дає границі між областями стійкості/нестійкості в просторі параметрів вихідної системи. Перевага методу алгебраїзації є в тому, що нема потреби використовувати представлення у часі розв’язку, що досліджується на стійкість. Інший підхід до про-блеми стійкості форм коливань пов’язаний з класичним визначенням стійкості за Ляпуновим. Запропонований аналітико-числовий тест може бути використаний в задачі стійкості форм коливань тоді, коли ця проблема не має аналітичного розв’язку. Він також дозволяєотримати границі між областями стійкості / нестійкості у просторі параметрів системи. В роботі перший підхід використано для аналізу стійкості нормальних форм коливань в системі пов’язаних осциляторів на суттєво нелінійній пружній опорі, а другий - для аналізу стійкості горизонта-льної форми коливань в так званому стохастичному абсорбері.