Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 19
  • Ескіз
    Документ
    Intelligent automated computer systems
    (Informacijas Sistemu Menedžmenta Augstskola, 2021) Zakovorotniy, Alexandr; Kharchenko, Artem
    Fuzzy logic and neural network methods are currently used to solve problems related to process modeling in the conditions of uncertainty or insufficient input data. Neural networks allow not only to model processes as close as possible to real ones, but also to forecast the values of technical parameters. The reliability of a computer system depends on the right choice of the input parameters and the accuracy of calculations. This work is devoted to the issue of developing the automated computer system, taking into account the dynamics of railway vehicles.
  • Ескіз
    Документ
    Web-analytics for business
    (Simon Kuznets Kharkiv National University of Economics, 2021) Rayevnyeva, Olena; Aksonova, Iryna; Brovko, Olha; Shlykova, Viktoriia
    In the modern conditions of the development of a digital society, the importance of Web analytics is increasing as a system of collecting, analyzing and interpreting statistical information about site visitors of various business structures in order to identify and understand the reasons for their actions and further optimize activities. The discipline "Web analytics for business" is aimed at mastering modern digital practices and technologies of working with information, effective tools of web analytics, understanding that analytics is a key skill in business product management. In the process of studying the discipline there is a practical mastering of the methodology of search engine optimization on the Internet, which involves clarifying the nature, content, purpose and objectives of web analytics, mastering the methodological tools for measuring and analyzing web data to make decisions aimed at optimizing the use of web tools firms. The purpose of the discipline "Web analytics for business" is to acquire theoretical knowledge and practical skills in the basics of web analysis of various web resources to assess their effectiveness and optimize business activities. The subject of the discipline is a variety of businesses that use digital analytical tools to obtain information on the basis of which sound management decisions are made to optimize activities and further development. The subject of the discipline are digital tools for searching and analyzing information, web analytics services that allow you to collect, measure, evaluate data, visualize them, present in order to make management decisions to improve business efficiency.
  • Ескіз
    Документ
    Parallel and distributed calculations. Part 1
    (National Technical University "Kharkiv Polytechnic Institute", 2024) Chernykh, Olena Petrivna; Chelak, Viktor Volodymyrovych; Limarenko, Viacheslav Volodymyrovych
    The laboratory course includes 8 laboratory works, among which the first one introduces students to the procedure of installing the MS-MPI environment on the machines of the computer room with the task of all the necessary configuration parameters. The works (from the second to the ninth inclusive) after some refinement of the texts of known parallel computational problems acquaint students with the methodology of parallel programs building, the computing environment configuring, interpretation and study of the results of the parallel program on a set of source data and laboratory performance report. Designed for students of computer science specialities.
  • Ескіз
    Документ
    Methods to keep up motivation and stimulation to continuous learning and development of the it company's staff
    (ФОП Томенко Ю. І., 2023) Shmatko, N.; Tsiupryk, V.
  • Ескіз
    Публікація
    Methodical guidelines for individual calculation task on the discipline "Data analysis tools"
    (National technical university "Kharkiv polytechnic institute", 2024) Grinberg, Galyna Leonidivna; Konokhova, Zoya Petrіvna
    The main goal of the individual calculation task "Data Analysis Tools" is to master modern methods of information analysis using application software, namely, to acquire skills in the full cycle of data research - accumulation, structuring, analysis and visualization of analysis results. Carrying out this calculation task provides an opportunity to learn data analysis methods using a spreadsheet editor (MS Office Excel, Google Sheets, etc.). Students, in addition to theoretical knowledge, should acquire practical skills of sorting, filtering, formatting, summarizing and visualizing data. Calculation task guidelines include purpose and tasks, calculation task structure, implementation instructions, bibliography and example of the calculation task performing.
  • Ескіз
    Публікація
    Methodical guidelines for laboratory work in the discipline "Data analysis tools"
    (National technical university "Kharkiv polytechnic institute", 2024) Grinberg, Galyna Leonidivna; Konokhova, Zoya Petrіvna
    The main goal of the laboratory workshop "Data Analysis Tools" is to master modern methods of information analysis using application software, namely, to acquire skills in the full cycle of data research - accumulation, structuring, analysis and visualization of analysis results. Carrying out laboratory work provides an opportunity to learn data analysis methods using a spreadsheet editor (MS Office Excel, Google Sheets, etc.). During laboratory work, students, in addition to theoretical knowledge, should acquire practical skills of sorting, filtering, formatting, summarizing and visualizing data. Laboratory works include informational material, step-by-step examples of tasks and tasks for independent implementation. Students receive evaluations for a specific type of work from the teacher individually.
  • Ескіз
    Документ
    Architecture models and patterns for safety and security for IoT applications
    (Харківський національний автомобільно-дорожній університет, 2019) Mnushka, O. V.; Savchenko, V. M.
  • Ескіз
    Документ
    New Neural Networks for the Affinity Functions of Binary Images with Binary and Bipolar Components Determining
    (ASTES Publishers, 2021) Dmitrienko, Valerii; Leonov, Serhii; Zakovorotniy, Aleksandr
    The Hamming neural network is an effective tool for solving problems of recognition and classification of objects, the components of which are encoded using a binary bipolar alphabet, and as a measure of the objects’ proximity the difference between the number of identical bipolar components which compared include objects and the Hamming distance between them are used. However, the Hamming neural network cannot be used to solve these problems if the input network object (image or vector) is at the same minimum distance from two or more reference objects, which are stored in the weights of the connections of the Hamming network neurons, and if the components of the compared vectors are encoded using a binary alphabet. It also cannot be used to assess the affinity (proximity) binary vectors using the functions of Jaccard, Sokal and Michener, Kulchitsky, etc. These source network Hamming disadvantages are overcome by improving the architecture and its operation algorithms. One of the disadvantages of discrete neural networks is that binary neural networks perceive the income data only when it’s coded in binary or bipolar way. Thereby there is a specific apartness between computer systems based on the neural networks with different information coding. Therefore, developed neural network that is equally effective for any function of two kinds of coding information. This allows to eliminate the indicated disadvantage of the Hamming neural network and expand the scope of discrete neural networks application for solving problems of recognition and classification using proximity functions for discrete objects with binary coding of their components.
  • Ескіз
    Документ
    Усовершенствованная концепция защиты данных на базе многоуровневого анализа карт операционной системы
    (Національний університет "Полтавська політехніка ім. Юрія Кондратюка", 2017) Гавриленко, Светлана Юрьевна; Шевердин, Илья Валентинович
    Разработана многоуровневая антивирусная система, базирующаяся на анализе системных событий и низкоуровневых команд. Архитектурно система операционно-зависима, что позволяет сформировать карты уровней конкретно выполняемой операционной системы, основываясь на различии драйверов устройств и различных системных компонентах. Анализ процессов, а не групп системных компонентов, позволяет увеличить быстродействие системы по сравнению с существующими реализациями эвристического анализа.
  • Ескіз
    Документ
    Вдосконалена методологія проектування систем антивірусного захисту
    (Національний університет "Полтавська політехніка ім. Юрія Кондратюка", 2016) Гавриленко, Світлана Юріївна; Шевердін, Ілля Валентинович; Шипова, Т. М.
    У статті розроблені шаблони побудови антивірусної системи та описано шляхи вирішення проблематики антивірусного захисту. Забезпечено цілісність антивірусних модулів системи та можливість масштабування кінцевого продукту. Запропоновано принципово новий підхід у побудові антивірусів базуючись на використанні гіпервізору для компонентної агрегації. Вирішено питання відтворення інформації після руйнівної дії вірусної атаки. Запропоновано новий метод мапоорієнтованого опису комп’ютерних загроз. Описано один з методів побудови мап комп’ютерної загрози.