Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Closed-form quaternion representations for rigid body rotation: application to error assessment in orientation algorithms of strapdown inertial navigation systems
    (2020) Plaksiy, Yu. A.; Breslavsky, D. V.; Homozkova, I. O.; Naumenko, K.
    Closed-form analytical representations of the rigid body orientation quaternion, angular velocity vector and the external moment vector satisfying kinematic equations and equations of motion are derived. In order to analyze errors of orientation algorithms for strapdown inertial navigation systems, reference models for specific rigid body rotation cases are formulated. Based on solutions, analytical expressions for ideal signals of angular velocity sensors in the form of quasi-coordinates are derived. For several sets of parameters, numerical implementations of the reference models are performed and trajectories in the configuration space of orientation parameters are presented. Numerical analysis of the drift error for the third-order orientation algorithm is performed. The results show that the value of the accumulated drift error using the derived two-frequency models exceeds the value of the accumulated drift error in the conventional case of a regular precession.
  • Ескіз
    Документ
    Аналіз точності алгоритма орієнтації Р. Міллера на чотирьохчастотній еталонній моделі обертання твердого тіла
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Плаксій, Юрій Андрійович; Гомозкова, Ірина Олександрівна
    Запропоновано нове аналітичне представлення компонент кватерніона орієнтації твердого тіла у вигляді алгебраїчної суми добутків тригонометричних функцій кутів, що одномоментно змінюються у часі. З оберненого кватерніонного кінематичного рівняння отримані аналітичні вирази для компонент вектора кутової швидкості, що відповідають такому обертальному руху. Для задачі оцінювання точності алгоритмів безплатформеної орієнтації сформовано еталонну модель обертання, яка включає аналітичні вирази для ідеальних сигналів датчиків кутової швидкості у вигляді квазікоординат. Для декількох наборів частот отримано чисельні реалізації еталонної моделі, побудовані траєкторії в конфігураційному просторі параметрів орієнтації. Проведено чисельний аналіз похибки дрейфу для алгоритму орієнтації четвертого порядку з використанням у якості проміжних параметрів компонент вектора орієнтації, приріст якого на такті обчислюється алгоритмом Р. Міллера при різних значеннях коефіцієнтів. Показано, що алгоритм Р. Міллера з новим набором коефіцієнтів забезпечує меншу накопичену похибку дрейфу у порівнянні з традиційним алгоритмом і оптимізованим під конічний рух.
  • Ескіз
    Документ
    Нові двочастотні еталонні моделі обертання твердого тіла для точносного аналізу алгоритмів орієнтації БІНС
    (НТУ "ХПІ", 2018) Плаксій, Юрій Андрійович; Гомозкова, Ірина Олександрівна
    Запропоновано нові аналітичні представлення розв'язків рівнянь обертання твердого тіла і основані на них неперервні двочастотні еталонні моделі обертання. Отримано аналітичні залежності для квазікоординат і компонент кватерніона, що відповідають такому обертальному руху. Для декількох наборів параметрів отримано чисельні реалізації моделей і проведено чисельний аналіз поведінки оцінки похибки дрейфу для алгоритму орієнтації третього порядку. Показано, що тестовий обертальний рух на основі двочастотних еталонних моделей приводить до значно більшої похибки визначення орієнтації, ніж це має місце при регулярній прецесії.