Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Analysis of trends in UI/UX interface development and their impact on future user experience
    (ТОВ "Друкарня Мадрид", 2023) Azarenkov, V. I.; Svintsova, D. O.
  • Ескіз
    Документ
    Effect of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers
    (SPIE, 2013) Pershyn, Yuriy P.; Gullikson, Eric M.; Kondratenko, Valeriy V.; Mamon, Valentine V.; Reutskaya, Svetlana A.; Voronov, Dmitriy L.; Zubarev, Evgeniy N.; Artyukov, Igor A.; Vinogradov, Alexander Vladimirovich
    By methods of cross-sectional transmission electron microscopy and small-angle x-ray scattering (λ = 0.154 nm) the influence of Ar gas pressure (1 to 4 mTorr) on the growth of amorphous interfaces in Mo/Si multilayers (MLs) deposited by DC magnetron sputtering is studied. The significant reduction in the ML period, which is evident as a volumetric contraction, is observed in MLs deposited at Ar pressure where the mean-free path for the sputtered atoms is comparable with the magnetronsubstrate distance. Some reduction in the thickness of the amorphous interlayers with Ar pressure increase is found, where the composition of the interlayers is enriched with molybdenum. The interface modification resulted in an increase in EUV reflectance of the Mo/Si MLs
  • Ескіз
    Документ
    Growth and crystallization of molybdenum layers on amorphous silicon
    (Elsevier Ltd, 2011) Zubarev, Evgeniy N.; Kondratenko, Valeriy V.; Pershyn, Yuriy P.; Sevryukova, Victoriya A.
    The structure of molybdenum layers deposited by direct current magnetron sputtering onto the amorphous silicon (a-Si) layers as function of nominal layer thickness was studied by methods of transmission electron microscopy. Molybdenum layers with nominal thickness 1.5btMo nomb1.9 nm consist of clusters which should be considered as a transient state between strongly disordered (amorphous) state and crystal one. A transition from clusters to polycrystals takes place within the thickness range of 1.9btMo nomb2.5 nm. Resulting Mo crystallites have an inequiaxial form with dimensions of (3–4)×(15–30)nm2 and consist of blocks. The lateral axis of inequiaxial crystallites is parallel to 110 direction. As the metal layer thickness increases Mocrystallites take the more regular form at the expense of recrystallization.