2022

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/56991

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Керування та охолодження електронного навантаження на основі fet-транзистора
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Зайцев, Роман Валентинович; Кіріченко, Михайло Валерійович; Мінакова, Ксенія Олександрівна; Нікітін, Віктор Олексійович; Воробйов, Богдан Віталійович; Харченко, Микола Михайлович
    Впровадження електронного навантаження для випробування високоточних низьковольтних джерел (сонячних батарей) вимагає ретельного перегляду не тільки схемотехнічної конструкції, а й теплотехнічної та механічної конструкції такого приладу. Сучасні досягнення у розробці сонячних елементів та інших низьковольтних джерел енергії призвели до необхідності створення компактнихта експресних систем їх тестування, котрі не можна реалізувати на існуючих рішеннях. У статті розглядається принцип створення та розрахунку оптимального рішення для реалізації електронного навантаження. Для досягнення мети використовуються методи аналізу сучасної електронної бази, розрахунки основних фізичних та електричних параметрів, а також їх моделювання. На основі розглянутих фізико-схемних рішень для реалізації електронного блоку навантаження була розроблена відповідна електрична схема. Транзистори керуються чотирма уніполярними операційними підсилювачами, інтегрованими в мікросхему LM324. Управління електронним блоком навантаження реалізується шляхом управління напругою на клемах позитивного зворотного зв'язку, яка додатково стабілізується мікросхемою TL431. Пристрій живиться від джерела постійного стабілізованого струму напругою 12 В (забезпечує додаткову фільтрацію від коливань напруги). Розрахунок теплового балансу дозволяє правильно підібрати систему охолодження для стабільної роботи системи. Управління електронним блоком навантаження реалізовано за допомогою мікросхем INA219 та Xicor X9C, запропоновано спосіб їх калібрування. Ці рішення дозволять створити універсальне рішення електронного навантаження для дослідження напівпровідникових приладів і сонячних елементів. Дотримання рекомендацій і принципів, які викладені в цій статті, забезпечить навантаженню можливість працювати на великій потужності і при цьому зберегти хороші характеристики та надійність.
  • Ескіз
    Документ
    Двовісна модель теплового балансу сонячного колектора
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Мінакова, Ксенія Олександрівна; Зайцев, Роман Валентинович
    Розглядаються сонячні колектори та термофотоелектричні системи (PV/T), що є одними з найперспективніших систем відновлюваних джерел енергії. Електроенергія, що виробляється фотоелектричними панелями, має великий потенціал, але й має технологічні недоліки, що не дають отримати максимальну ефективність. Розробка універсальної моделі теплообмінних процесів для оптимізації конструктивних особливостей PV/T систем на етапах проектування та виробництва дозволить збільшити термін служби таких систем та збільшити їх ефективність. Розроблена модель дозволяє враховувати більшість практичних параметрів за двома координатами плаского колектора, які враховують втрати теплової енергії, тепловий опір пластини абсорбера, теплообмін, робочі температури, тощо. Результати проведених модельних розрахунків корелюють з експериментальним даними. На основі запропонованої моделі розроблено програмний продукт для моделювання PV/T систем та проведено його тестування на відомих експериментальних результатах та готових PV/T системах. При проведенні розрахунків з використанням базових параметрів, отримано нагрівання теплоносія при проходженні одного сегмента колектора приблизно на 1,5⁰С. Зазначене зростання температури досягається при швидкості теплоносія 0,6 м/с, що є досить великою швидкістю. Найбільш оптимальним буде досягнення нагрівання теплоносія при проходженні через колектор на 5⁰С, що дозволить знизити швидкість протікання теплоносія аж до 0,2 м/с і значно знизити витрати електричної енергії на роботу помпи. Використання розробленої моделі дозволить вирішувати широке коло оптимізаційних завдань на етапах проектування та оптимізації сонячних колекторів та PV/T систем, отримувати оптимальні параметри конструкції для досягнення найбільшої ефективності та мінімальної собівартості.