Видання НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886
Переглянути
7 результатів
Результати пошуку
Документ Отримання дизельного палива з поліпшеними властивостями(Національний технічний університет "Харківський політехнічний інститут", 2021) Троценко, О. В.; Григоров, Андрій Борисович; Назаров, В. М.Відомо, що одним із шляхів підвищення рівня експлуатаційних властивостей дизельних палив є введення до їх складу спеціальних компонентів – присадок. Цей шлях на сьогоднішній день є досить раціональним та економічно доцільним для України, особливо в умовах відсутності якісної нафтової сировини для виробництва палив, що у свою чергу призводить до значної імпортозалежності. Спектр присадок, які використовуються у дизельних паливах, є вельми різноманітним, що вносить певні складності до підбору їх збалансованого пакету, особливо з огляду на їх ефективність та сумісність одна з одною. Дещо спростити цю процедуру можливо за рахунок додавання до дизельних палив поліфункціональних присадок, використанню яких присвячено багато періодичної літератури. Спираючись на актуальність напрямку наукових досліджень, пов’язаного з поліпшенням властивостей дизельного палива, яке виробляється на підприємствах нафтопереробної галузі України, нами було запропоновано використовувати у складі дизельних палив речовину, яка відноситься до класу ароматичних діазосполук та володіє поліфункціональними властивостями. Так, дана присадка додавалася до прямогонної дизельної фракції (240–350 °С) у кількості до 1,0 %, з подальшим дослідженням властивостей отриманої суміші. Дослідження показали, що присадка значно поліпшує низькотемпературні властивості (на -10 °С), сприяє підвищенню густини і віскозності та додатково надає стійкий колір (від жовтого до помаранчевого) дизельному паливу. Отже, може бути використана у складі товарних дизельних палив, с підвищеними експлуатаційними властивостями.Документ Експлуатаційні властивості палива для судноплавства, отриманого з вторинної полімерної сировини(Національний технічний університет "Харківський політехнічний інститут", 2023) Чернявський, Андрій Володимирович; Григоров, Андрій БорисовичВ статті обґрунтовано необхідність визначення експлуатаційних властивостей палива для судноплавства, отриманого з вторинної поліолефінової (HDPE та РР) сировини шляхом каталітичного піролізу. Оцінювати експлуатаційні властивості палива для судноплавства – marine gasoil (MGO) пропонується за значенням цетанового індексу (ЦІ, од.), співвідношення Н:С, робочої теплоти згоряння (Q, МДж/кг). З огляду на запропоновану нами схему каталітичного піролізу полімерної сировини, яка складається з двох стадій (І стадія – протікання реакцій на суміші (1:1) цеолітвмісних каталізаторів Zn-H-ZSM-5/Fe-H-ZSM-5; ІІ стадія – протікання реакцій на каталізаторі Ni-H-ZSM-5), виникає необхідність визначати наведені вище показники якості продуктів реакції (фракцій з межами википання п.к.-360(380) °С) після кожної стадії процесу. Також додатково нами були визначені показники якості і для фракцій, отриманих на промисловому каталізаторі H-ZSM-5. Запропонована програма досліджень, з одного боку, дозволяє визначити ефективність процесу піролізу з обраними каталізаторами у порівнянні з промисловою технологією, з іншого – дозволить корегувати процес в напрямку отримання кінцевого продукту рівня якості, який відповідає вимогам до MGO, представленим в ISO 8217:2017. Проведені дослідження показали, що за величиною ЦІ (48–50 од.) та ν 40 (2,8–3,1 мм²/с) фракції з межами википання 180–360(380) °С, які отримані піролізом полімерної сировини по запропонованій нами двохстадійній технології (на каталізаторах Zn-H-ZSM-5/Fe-H-ZSM-5, Ni-H-ZSM-5) можна віднести до марок дистилятних морських палив DMA, DFA, DMZ, DFZ (ISO 8217:2017). Дані фракції також характеризується високим співвідношенням Н:С (для HDPE – 1,62; для РР – 1,64) та робочою теплотою згоряння (для HDPE – 44,0 МДж/кг; для РР – 44,3 МДж/кг), що дає змогу використовувати їх в якості палив для судноплавства.Документ Паливо для судноплавства, отримане з вторинної полімерної сировини(Національний технічний університет "Харківський політехнічний інститут", 2022) Чернявський, Андрій Володимирович; Григоров, Андрій БорисовичВ статті розглянуто можливість розширення сировинної бази процесу виробнитва моторних палив, зокрема палив для судноплавства, за рахунок використання вторинної полімерної сировини. Встановлено, що дана сировина, яка представлена різними поліолефінами, характеризується відсутністю або досить низьким (до 150–200 ррm) вмістом сірковмісних сполук. Отже, за таким показником як вміст сірки, використовуючи технології термічного або каталітичного піролізу в апараті реакторного типу, з вторинної полімерної сировини можна отримати палива, які за вмістом сірки (0,5 % та 0,1 %, відповідно) будуть відповідати marine gasoil (MGO) або low sulfur marine gasoil (LS-MGO). Експериментально встановлено, що в продуктах термічного піролізу вторинної полімерної сировини міститься до 30–40 % олефінових вуглеводнів, які мають низьку хімічну стабільність та підвищену, у порівнянні з парафіновими та нафтеновими вуглеводнями, гігроскопічність. Такі продукти, з огляду на їх властивості, доцільно використовувати лише як компоненти морських палив. На відміну від цього, продукти каталітичного піролізу (процес відбувався з використанням цеолітного каталізатору ZSM-5) вторинної полімерної сировини навпаки, мають високу хімічну стабільність внаслідок низького (до 3 %) вмісту олефінових вуглеводнів. Але, при цьому, вони містять у своєму складі до 15 % ароматичних вуглеводнів, що не перевищує загально прийняті обмеження на їх вміст у моторних паливах. Визначено, що основним параметром, яким можна регулювати деякі показники якості отриманих продуктів, виступає температура початку кипіння отриманих фракцій. Її збільшення значно знижує гігроскопічність та підвищує температуру спалаху отриманих продуктів. Разом з тим, значно підвищувати цей показник не доцільно, з огляду на зниження виходу цільового продукту (збільшення температури початку кипіння фракції лише на 1 °С призводить до зниження її виходу на 0,275–0,325 %).Документ Підвищення екологічності автомобільних бензинів(Національний технічний університет "Харківський політехнічний інститут", 2022) Троценко, Олександр Володимирович; Григоров, Андрій БорисовичВ статті розглянуто заходи, спрямовані на поліпшення екологічної ситуації великих міст, за рахунок зниження шкідливої дії вихлопних газів, що утворюються при експлуатації автомобільного транспорту. Обґрунтовано, що безпосереднє підвищення екологічності автомобільних бензинів є найбільш перспективним підходом щодо зниження токсичності вихлопних газів. Досягти цього підвищення можливо за рахунок зниження в складі бензинів розчинених вуглеводневих газів (C4H10 та ізоC4H10) і металів (Pb, Fe, Mn); полегшення фракційного складу бензинів (зниження температури кін-ця кипіння); зменшення в бензинах вмісту сірки, ароматичних вуглеводнів та олефінів. Зниження цих небажаних, з екологічної точки зору, компонентів, дозволить підвищити якість автомобільних бензинів до прийнятих в Україні, вимог Євро-5, а також значно подовжити термін експлуатації спеціальних каталізаторів, що встановлюються на автомобільний транспорт з метою очищення вихлопних газів. Досліджено вплив на бензинову фракцію (п.к. – 180 °С) та товарні автомобільні бензини А-95, оксигенатів (метилтрет-бутилового ефіру та етилового спирту) і 1,3-діфенілтриазену. Встановлено, що використання 1 % мас. 1,3-дифенілтріазену, в складі прямогоного бензину дозволяє підвищити його стійкість до детонації на 12 пунктів, знизити токсичність вихлопних газів на 24 % за вмістом СО та 17 % за вмістом СН. Визначено, що додавання до товарних бензинів А-95 1,3-дифенілтріазену в кількості 1 % мас., на відміну від оксигенатів, не призводить до змінення випаровуваності бензинів та їх фізичної стабільності. Використання в складі товарних автомобільних бензинів 1,3-дифенілтріазен, завдяки його позитивним властивостям, в майбутньому, дозволить оптимізувати використання інших присадок, зокрема оксигенатів, які сьогодні широко застосовуються в технології виробництва товарних автомобільних бензинів.Документ Метод прогнозування напрямку переробки вуглеводневої сировини(Національний технічний університет "Харківський політехнічний інститут", 2022) Сатер, Набіль Абдель; Григоров, Андрій БорисовичВ статті запропоновано раціоналізувати роботу установок з переробки вуглеводневої сировини, за рахунок її класифікації за типами, використовуючи критерій прогнозування (КП) напрямку переробки. Такий підхід у загальному випадку буде сприяти раціональному використанню технологічного обладнання, зниженню металоємності апаратів та схем переробки, зниженню енергетичних витрат за рахунок рекуперації надлишкового тепла та зниження теплообміну з навколишнім середовищем, ефективному використанню насосного обладнання. При цьому, також буде підвищуватися загальна культура виробництва та буде спостерігатися зменшенням шкідливого навантаження на довкілля. Експериментальні дослідження показали, що показники відносної діелектричної проникності (ε), кінематичною в’язкістю (ν20, мм2/с) та коксівністю за Конрадсоном (хк, %) вуглеводневої сировини, суттєво залежать від її хімічного та фракційного складу. Зважаючи на це,запропонований КП повинен базується на урахуванні означених вище показників. Експериментальні дослідження дозволили визначити певні граничні значення КП у відповідності до яких, вуглеводневу сировину можна віднести до певного типу: тип 0 – КП≤1,50; тип 1, 2 – 1,50 ≤ КП≤ 5,50 ; тип 3 – 5,50 ≤ КП≤11,00 ; тип 4 – КП ˃11,00. На підставі розрахованих значень КП, в подальшій перспективі, можна розробити раціональні схеми технологічної переробки вуглеводневої сировини, які будуть відноситися до паливного, оливного та комбінованого напрямку (варіанту). В залежності від потреби у певних видів нафтопродуктів, цільовими компонентами, які отримують при реалізації даних схем є вуглеводневі гази, моторні і котельні палива, змащувальні оливи, нафтовий кокс, бітуми, побічні продукти – гази деструкції, парафін, смоли і асфальтени.Документ Властивості котельного палива, компаундованого вузькими паливними фракціями(Національний технічний університет "Харківський політехнічний інститут", 2021) Шевченко, Кирило Володимирович; Григоров, Андрій Борисович; Сінкевич, Ірина ВалеріївнаЗ метою поліпшення експлуатаційних властивостей, зокрема в’язкісно-температурних, котельного палива запропоновано їх компаундування з вузькими пали-вними фракціями, отриманими шляхом термічної деструкції вторинної полімерної си-ровини (поліетилену низького тиску та поліпропілену). При компаундуванні мазуту марки 100 з вузькими паливними фракціями, відбу-вається зниження значень густини до 865 (873) кг/м3, умовної в’язкості до 2,50 (2,63) град. ум., температури застигання до 8 (13) °С) , вмісту сірки до 0,17 % мас. та підвищу-ється нижча теплота згоряння до 43606 (43850) кДж/кг. При цьому, відбувається посту-пове зниження величини показника температури спалаху до 114(127) °С. Таке зниження є негативним моментом, який призводить до підвищення поже-жонебезпеки мазуту при його використанні, зберіганні, перекачування і транспорту-ванні. Але, при цьому, значення показника температури спалаху, згідно вимог норма-тивної документації, знаходяться у допустимих межах. Тобто, значенням саме цього показника можна обмежувати вміст у мазуті вузьких паливних фракцій. Визначено, що раціональна концентрація вузьких паливних фракцій у складі то-пкового мазуту марки 100, знаходиться у межах до 30% мас. У цих межах спостеріга-ється припустиме зниження значень температури спалаху – показника, що характеризує пожежонебезпеку мазуту при його використанні, зберіганні, перекачування і транспор-туванні на фоні поліпшення інших експлуатаційних властивостей мазуту. Виробництво запропонованого компаундованого котельного палива з одного бо-ку дозволяє розширити сировинну базу процесу, шляхом залучення до виробничого процесу вторинну полімерну сировини – тверді побутові відходи, що підлягають обов’язковій утилізації, з іншого – задовольнити існуючий попит на котельне паливо, за рахунок підвищення обсягів його виробництва.Документ Визначення корозійного впливу на метал палива, отриманого з вторинної полімерної сировини(Національний технічний університет "Харківський політехнічний інститут", 2021) Шевченко, Кирило Володимирович; Григоров, Андрій Борисович; Сінкевич, Ірина ВалеріївнаВ статті запропоновано визначати корозійний вплив на метали палива у динамі-чних умовах тобто, при омиванні підготовленої мідної пластинки певного розміру, зна-чним об’ємом досліджуваного палива при певних швидкостях і температурі досліджен-ня. Такий підхід дозволить значно скоротити тривалість проведення дослідження (до 100 хв.) та є більш наближеним до реальних умов застосування палива, у порівнянні, зі стандартизованим методом, який сьогодні широко застосовується. Використовуючи запропоновану лабораторну установку, дослідженню підверга-лося паливо (200–360 °С), яке було отримане при термічній деструкції вторинної полі-мерної сировини, зокрема поліпропіленової. Отримані результати показали, що дослі-джуване паливо, незважаючи на температуру, кількість циркулюючого палива та вміст у ньому води не оказує корозійного впливу на мідну пластинку, що можна пояснити відсутністю корозійно-активних речовин у складі палива: водорозчинних мінеральних кислот та лугів, активних сірчаних сполук та органічних кислот. Але слід враховувати, що у поліолефіновій сировині, у вигляді забруднення, можуть бути присутні вироби з інших матеріалів, наприклад, гуми та полівінілхлориду. Це може статися при порушен-ні технології сортування або при попередній підготовки сировини і, у свою чергу, сприятиме збільшенню у паливі сірковмісних та хлорвмісних сполук, які характеризу-ються високою корозійною активністю і підлягають обов’язковому видаленню зі скла-ду палива. Зауважмо, що паливо, отримане з вторинної полімерної сировини, за умов відсу-тності сірковмісних та хлорвмісних сполук, є досить перспективним для створення на його базі сучасних синтетичних палив, аналогів класичних нафтопродуктів.