Електротехніка і Електромеханіка

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62894

Офіційний сайт http://eie.khpi.edu.ua/

Журнал публікує оригінальні результати досліджень з аналітичного, чисельного та мультифізичного методів моделювання електрофізичних процесів в електротехнічних електромеханічних та електроенергетичних установках та системах, з розробки нових електротехнічних пристроїв і систем з поліпшеними техніко-економічними та екологічними показниками в таких сферах, як: теоретична електротехніка, інженерна електрофізика, техніка сильних електричних та магнітних полів, електричні машини та апарати, електротехнічні комплекси та системи, силова електроніка, електроізоляційна та кабельна техніка, електричний транспорт, електричні станції, мережі і системи, безпека електрообладнання.

Рік заснування: 2002. Періодичність: 6 разів на рік. ISSN 2074-272X (Print), ISSN 2309-3404 (Online).

Новини

Видання включене до Переліку наукових фахових видань України з технічних наук до найвищої категорії «А» згідно Наказу МОН України №1412 від 18.12.2018 р.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Wavelet packet analysis for rotor bar breakage in an inverter induction motor
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Abu Ibaid, O. Z. I.; Belhamdi, S.; Abid, M.; Chakroune, S.; Mouassa, S.; Al-Sagar, Z. S.
    In various industrial processes, squirrel cage induction motors are widely employed. These motors can be used in harsh situations, such as non-ventilated spaces, due to their high strength and longevity. These machines are subject to malfunctions such as short circuits and broken bars. Indeed, for the diagnosis several techniques are offered and used. Novelty of the proposed work provides the use of wavelet analysis technology in a continuous and discrete system to detect faults affecting the rotating part of an induction motor fed by a three-phase inverter. Purpose. This paper aims to present a novel technique for diagnosing broken rotor bars in the lowload, stationary induction machine proposed. The technique is used to address the problem of using the traditional Techniques like Fourier Transforms signal processing algorithm by analyzing the stator current envelope. The suggested method is based on the use of discrete wavelet transform and continuous wavelet transform. Methods. A waveform can be monitored at any frequency of interest using the suggested discrete wavelet transform and continuous wavelet transform. To identify the rotor broken bar fault, stator current frequency spectrum is analyzed and then examined. Based on a suitable index, the algorithm separates the healthy motor from the defective one, with 1, 2 and 3 broken bars at no-load. Results. In comparison to the healthy conditions, the recommended index significantly raises under the broken bars conditions. It can identify the problematic conditions with clarity. The possibility of detecting potential faults has been demonstrated (broken bars), using discrete wavelet transform and continuous wavelet transform. The diagnostic method is adaptable to temporary situations brought on by alterations in load and speed. Performance and efficacy of the suggested diagnostic method are demonstrated through simulation in Simulink® MATLAB environment.
  • Ескіз
    Документ
    Diagnosis and localization of fault for a neutral point clamped inverter in wind energy conversion system using artificial neural network technique
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Abid, Mimouna; Laribi, Souad; Larbi, M'hamed; Allaoui, Tayeb
    To attain high efficiency and reliability in the field of clean energy conversion, power electronics play a significant role in a wide range of applications. More effort is being made to increase the dependability of power electronics systems. Purpose. In order to avoid any undesirable effects or disturbances that negatively affect the continuity of service in the field of energy production, this research provides a fault detection technique for insulated-gate bipolar transistor open-circuit faults in a three-level diode-clamped inverter of a wind energy conversion system predicated on a doubly-fed induction generator. The novelty of the suggested work ensures the regulation of power exchanged between the system and the grid without faults, advanced intelligence approaches based on a multilayer artificial neural network are used to discover and locate this type of defect; the database is based on the module and phase angle of three-phase stator currents of induction generators. The proposed methods are designed for the detection of one or two open-circuit faults in the power switches of the side converter of a doubly-fed induction generator in a wind energy conversion system. Methods. In the proposed detection method, only the three-phase stator current module and phase angle are used to identify the faulty switch. The primary goal of this fault diagnosis system is to effectively detect and locate failures in one or even more neutral point clamped inverter switches. Practical value. The performance of the controllers is evaluated under different operating conditions of the power system, and the reliability, feasibility, and effectiveness of the proposed fault detection have been verified under various open-switch fault conditions. The diagnostic approach is also robust to transient conditions posed by changes in load and speed. The proposed diagnostic technique's performance and effectiveness are both proven by simulation in the SimPower /Simulink® MATLAB environment.