Електротехніка і Електромеханіка

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62894

Офіційний сайт http://eie.khpi.edu.ua/

Журнал публікує оригінальні результати досліджень з аналітичного, чисельного та мультифізичного методів моделювання електрофізичних процесів в електротехнічних електромеханічних та електроенергетичних установках та системах, з розробки нових електротехнічних пристроїв і систем з поліпшеними техніко-економічними та екологічними показниками в таких сферах, як: теоретична електротехніка, інженерна електрофізика, техніка сильних електричних та магнітних полів, електричні машини та апарати, електротехнічні комплекси та системи, силова електроніка, електроізоляційна та кабельна техніка, електричний транспорт, електричні станції, мережі і системи, безпека електрообладнання.

Рік заснування: 2002. Періодичність: 6 разів на рік. ISSN 2074-272X (Print), ISSN 2309-3404 (Online).

Новини

Видання включене до Переліку наукових фахових видань України з технічних наук до найвищої категорії «А» згідно Наказу МОН України №1412 від 18.12.2018 р.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Fault detection and monitoring of solar photovoltaic panels using internet of things technology with fuzzy logic controller
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Shweta, Raj; Sivagnanam, Sivaramalingam; Kumar, Kevin Ark
    Purpose. This article proposes a new control monitoring grid connected hybrid system. The proposed system, automatic detection or monitoring of fault occurrence in the photovoltaic application is extremely mandatory in the recent days since the system gets severely damaged by the occurrence of different faults, which in turn results in performance degradation and malfunctioning of the system. The novelty of the proposed work consists in presenting solar power monitoring and power control based Internet of things algorithm. In consideration to this viewpoint, the present study proposes the Internet of Things (IoT) based automatic fault detection approach, which is highly beneficial in preventing the system damage since it is capable enough to identify the emergence of fault on time without any complexities to generate Dc voltage and maintain the constant voltage for grid connected hybrid system. Methods. The proposed DC-DC Boost converter is employed in this system to maximize the photovoltaic output in an efficient manner whereas the Perturb and Observe algorithm is implemented to accomplish the process of maximum power point tracking irrespective of the changes in the climatic conditions and then the Arduino microcontroller is employed to analyse the faults in the system through different sensors. Eventually, the IoT based monitoring using fuzzy nonlinear autoregressive exogenous approach is implemented for classifying the faults in an efficient manner to provide accurate solution of fault occurrence for preventing the system from failure or damage.
  • Ескіз
    Документ
    An improved search ability of particle swarm optimization algorithm for tracking maximum power point under shading conditions
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Saeed, Hamdan; Mehmood, Tahir ; Khan, Fadia Ali ; Shah, Muhammad Shazaib; Ullah, Mian Farhan; Ali, Hamid
    Extracting maximum possible power from solar energy is a hot topic of the day as other sources have become costly and lead to pollution. Problem. Dependency on sunlight for power generation makes it unfeasible to extract maximum power. Environmental conditions like shading, partial shading and weak shading are the major aspect due to which the output of photovoltaic systems is greatly affected. Partial shading is the most known issue. Goal. There have been many proposed techniques and algorithms to extract maximum output from solar resources by use of photovoltaic arrays but every technique has had some shortcomings that couldn’t serve the complete purpose. Methodology. Nature inspired algorithms have proven to be good to search global maximum in a partially shaded multipeak curve which includes particle swarm optimization, artificial bee colony algorithm, and flower pollination algorithm. Methods. Particle swarm optimization algorithm is best among these in finding global peaks with less oscillation around maximum power point, less complexity, and easy to implement nature. Particle swarm optimization algorithm has the disadvantage of having a long computational time and converging speed, particularly under strong shading conditions. Originality. In this paper, an improved opposition based particle swarm optimization algorithm is proposed to track the global maximum power point of a solar photovoltaic module. Simulation studies have been carried out in MATLAB/Simulink R2018a. Practical value. Simulation studies have proved that opposition based particle swarm optimization algorithm is more efficient, less complex, more robust, and more flexible and has better convergence speed than particle swarm optimization algorithm, perturb and observe algorithm, hill climbing algorithm, and incremental conductance algorithm.