Nonlinear Dynamics : міжнародна конференція
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/24521
Переглянути
4 результатів
Результати пошуку
Документ Investigation of the Parametric Vibrations of Laminated Plates by RFM(NTU "KhPI", 2016) Kurpa, Lidiya; Mazur, Olga; Tkachenko, VictoriaThe R-functions theory is applied to study free vibration and dynamic instability of the symmetrically laminated plates subjected to combined static and periodic axial forces. It is assumed that subcritical state of the plate may be inhomogeneous. Theoretical formulation is made on the classical plate theory (CTP). The developed approach is based on combined application of Ritz’s method, Galerkin procedure, R-functions theory and Bolotin’s method. The buckling, instability zones and response curves for laminated plate with different external cutouts are presented and discussed. Effects of plate geometrical parameters, parking of layers, mechanical characteristics of the material on buckling, natural frequencies and parametric resonance are also studied.Документ Applicatin of R-functions Theory to Nonlinear Vibration Problems of Laminated Shallow Shells with Cutouts(NTU "KhPI", 2016) Kurpa, Lidiya; Timchenko, Galina; Osetrov, AndreyIn present work an effective method to research geometrically nonlinear free vibrations of elements of thinwalled constructions that can be modeled as laminated shallow shells with complex planform is applied. The proposed method is based on joint use of R-functions theory, variational methods and Bubnov-Galerkin procedure. It allows reducing an initial nonlinear system of motion equations of a shallow shell to the Cauchy problem. The mathematical formulation of the problem is performed in a framework of the refined first-order theory. The appropriate software is created within POLE-RL program system for polynomial results and using C+ + programs for splines. New problems of linear and nonlinear vibrations of laminated shallow shells with cutouts are solved. To confirm reliability of the obtained results their comparison with the ones obtained using spline-approximation and known in literature is provided. Effect o f boundary condition on cutout is studied.Документ Application of the R-Functions Method for Nonlinear Bending of Orthotropic Shallow Shells on an Elastic Foundation(NTU "KhPI", 2016) Kurpa, Lidiya; Lyubitska, KaterynaGeometrically nonlinear behavior of orthotropic shallow shells subjected to the transverse load and resting on Winkler’s foundation is investigated. On base of the R-function theory and variational methods problem's solution for shells with complex plan form is proposed. The algorithm to finding upper and lower critical loads is developed. The stress-strain state of shallow shells with the complex planform is investigated including different boundary conditions, properties of material and elastic foundation.Документ Application of the R-Functions Theory to Problems of Nonlinear Dynamics of Laminated Composite Shallow Shells and Plates: Review(NTU "KhPI", 2016) Kurpa, LidiyaA review of studies performed using the R-functions theory to solve problems of nonlinear dynamics of plates and shallow shells is presented. The systematization of results and studies for the problems of free and parametric vibrations and for problems of static and dynamic stability is fulfilled. Expansion of the developed original method of discretization for nonlinear movement equations on new classes of nonlinear problems is shown. These problems include researches of vibrations of antisymmetric laminated cylindrical and spherical panels; laminated composite shallow shells with variable thicknesss of the layers; functionally graded (FG) shallow shells and others. The basic issues that arise when using RFM are described. The future prospects of using the theory of R-functions for solving problems of nonlinear dynamics of plates and shallow shells with complex form are formulated. First of all this is an algorithms development and creation of the associated software to apply multi-modes approximations; improvement of approximation tools for nonlinear problems; investigation of the cracked functionally graded shallow shells; FG panels under thermal environments; parametric vibrations, static and dynamical stability of the multilayered and FG plates and shells.