Вісник Національного технічного університету «ХПІ». Серія: Динаміка та міцність машин

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/81081

Офіційний сайт http://jdsm.khpi.edu.ua/

У журналі представлено результати теоретичних і експериментальних досліджень статичної та динамічної міцності, надійності й оптимізації елементів конструкцій сучасних машин і енергетичних установок із широким використанням обчислювальної техніки.

Рік заснування: 1965. Періодичність: 2 рази на рік. ISSN 2078-9130 (Print)

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Дослідження точності роботи фізико-інформованих нейронних мереж на прикладі деформування балки
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Бабуджан, Руслан Андрійович; Шаповалова, Марія Ігорівна; Водка, Олексій Олександрович
    У роботі досліджено точність прогнозування деформації балки за допомогою фізико-інформованих нейронних мереж (PINN) у порівнянні зі звичайними повнозв'язними нейронними мережами. Для експерименту було використано аналітичне рішення задачі прогину балки, шарнірно опертої з одного кінця, закріпленої з іншого, та навантаженої точковою силою. Було створено набір даних, у якому варіювалася позиція прикладання навантаження для отримання різних значень прогину. Архітектура нейронної мережі базувалася на повнозв'язній структурі, навченої для прогнозування прогину. У ході дослідження порівнювалися дві функції втрат: стандартна, яка мінімізує середньоквадратичну помилку (MSE), та комплексна, що включає фізичну компоненту. Остання враховувала закони механіки, зокрема диференціальні рівняння прогину балки, які інтегрувалися у процес навчання через градієнти вихідних даних мережі. Результати показали, що включення фізичних законів у процес навчання значно підвищує точність прогнозів, особливо при обмеженій кількості даних. Порівняння продемонструвало, що фізико-інформована нейронна мережа забезпечує кращі результати, ніж звичайна модель, і точніше відображає поведінку балки під навантаженням. Отримані висновки підкреслюють ефективність підходу PINN для розв'язання інженерних задач, де важливу роль відіграють фізичні моделі та закони.