Науково-дослідний та проектно-конструкторський інститут "Молнія" (НДПКІ "Молнія" НТУ "ХПІ")
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4786
Офіційний сайт кафедри http://web.kpi.kharkov.ua/molnia
Від 1975 року інститут має назву Науково-дослідний та проектно-конструкторський інститут "Молнія" НТУ "ХПІ" , попередня назва – ОКБ ВІТ.
Започаткований у 1954 році видатним вченим і інженером канд. техн. наук, доцентом Саулом Марковичем Фертиком як науково-дослідна лабораторія механічних випрямлячів, інститут пройшов шлях до всесвітньо відомого випробувального полігону.
Інститут є одним із найяскравіших інститутів-супутників Національного технічного університету "Харківський політехнічний інститут" та добре відомий не тільки в Україні, а й далеко за її межами. НДПКІ "Молнія" найбільший науково-дослідний та випробувальний центр, що спеціалізується в галузі техніки високих напруг, електромагнітної стійкості та сумісності, розробки електромагнітних технологій широкого функціонального призначення на основі надпотужних імпульсних електричних і магнітних полів. Особливе значення в роботі інституту мають питання, що пов'язані з дослідженнями формування електромагнітних імпульсів природного та штучного походження та їх вражаючих дій на навколишнє середовище, насамперед на технічні засоби стратегічно важливих об'єктів України, зокрема на об'єкти ракетно-космічної, авіаційної техніки, та забезпечення блискавкозахисту технічних засобів, які застосовуються на таких енергооб'єктах України як атомні електростанції.
Переглянути
Результати пошуку
Документ Оцінка потенціалу енергозбереження при застосуванні рекуперації енергії на моторвагонному електрорухомого складу для приміських перевезень(Національний технічний університет "Харківський політехнічний інститут", 2023) Буряковський, Сергій Геннадійович; Овер'янова, Лілія Вікторівна; Нещерет, Володимир Олексійович; Іванов, Костянтин ІгоровичВирішено серію тягових задач для ділянки Харків-Пасажирський – Мерефа при русі базової секції електрорухомого складу. Встановлено, що коефіцієнт рекуперації для секції змінюється у діапазоні 0,26 – 0,47 і залежить від допустимої швидкості руху. Визначено, що потужність бортового накопичувача енергії має відповідати нормативній потужності тягового електроприводу, яка дорівнює 1200 кВт. Енергоємність накопичувача, який працює у режимі акумулювання енергії та живленні тягового електроприводу, становить 8,2 кВт·год.Публікація Електромеханічні та теплофізичні процеси в імпульсному індукційному прискорювачі плазмового утворення(Національний технічний університет "Харківський політехнічний інститут", 2023) Коритченко, Костянтин Володимирович; Болюх, Володимир Федорович; Буряковський, Сергій Геннадійович; Кашанський, Юрій Володимирович; Кочерга, Олександр ІвановичРоботи по створенню та метанню плазмових утворень різними способами ведуться в провідних наукових центрах світу. Досягнуто формування плазмового утворення тривалістю декілька мілісекунд та його метання у відкритому атмосферному середовищі на відстань 0,5-0,6 м. Для створення плазми використовують енергію первинного розрядного кола з подальшим прискоренням газоплазмового утворення за допомогою енергії вторинного кола. Плазмове утворення отримують і за рахунок електричного вибуху провідника. Метою статті є теоретичне та експериментальне дослідження електромеханічних та теплофізичних процесів в імпульсному індукційному прискорювачі, який забезпечує формування плазмового утворення за рахунок термічної іонізації в результаті електричного вибуху провідника та метання його у атмосферному середовищі відносно індуктора. Методика. Для аналізу електромеханічних та теплофізичних процесів в імпульсному індукційному прискорювачі плазмового утворення (ІІПП) розроблена і реалізована в програмному пакеті Сomsol Multiphysics математична модель прискорювача, в якій якір не змінює своєї форми і агрегатного стану в процесі роботи та враховує розподілені у просторі параметри. Результати. Розраховані електромеханічні і теплові характеристики прискорювача. Показано, що перевищення температури в якорі, що виконаний у вигляді алюмінієвої фольги, суттєво нерівномірно. Максимальне значення температури має місце в середній частині фольги ближче до зовнішнього краю, причому ця температура значно перевищує температуру кипіння алюмінію. Наукова новизна. Проведені експериментальні дослідження ІІПП, у якого якір виконаний з алюмінієвої та мідної фольги, а індуктор, що підключається до високовольтного ємнісного накопичувача енергії, виконаний у вигляді плоскої дискової спіралі. В процесі роботи ІІПП якір переходить в плазмовий стан і переміщується вертикально вверх, перетворюючись в об’ємний комок, або на скупчення маленьких частинок, які здіймались на декілька метрів відносно індуктора. Експериментально показано характерний круговий контур термічного нагрівання мідноїфольги якоря, яка закріплена на листі склотекстоліту. Практична цінність. Результати експериментальних досліджень з точністю до 15 % співпадають з розрахунковими і показують справедливість концепції ІІПП, в якому за рахунок високої густини індукованого струму в якорі відбувається термічна іонізація в результаті електричного вибуху провідника з переходом його в плазмовий стан. Взаємодія плазмового утворення з магнітним полем індуктора призводить до появи електродинамічної сили, яка забезпечує його переміщення у відкритому атмосферному середовищі на декілька метрів.Документ Визначення ймовірності удару блискавки в елементи об'єкта з урахуванням статистичного розподілу сили струму(Національний технічний університет "Харківський політехнічний інститут", 2023) Князєв, Володимир ВолодимировичВ роботі розглянуто застосування методу "сфери що котиться" до об'єктів інфраструктури у вигляді території, яка включає будівлі та споруди довільної форми. Запропоновано алгоритм урахування статистичного розподілу ймовірності сили струму блискавки для визначення ймовірності влучення блискавки у елементи об'єкту. Визначено, що не урахування цього аспекту у сучасних нормативних документах, призводить до суттєвих помилок. Такий підхід наддасть можливість оптимізувати схему розміщення блискавкоприймачів під час відновлення об’єктів з урахуванням зеленоїреконструкції.Документ Молния и летательные аппараты. Том 3(ТОВ "Цифра Прінт", 2021) Кравченко, Владимир Иванович; Князев, Владимир Владимирович; Лесной, Иван Петрович; Немченко, Юрий СеменовичРассмотрены современные подходы к методам испытаний летательных аппаратов на соответствие требованиям молниестойкости. Содержатся материалы по методикам испытаний, описанию высоковольтного испытательного оборудования и метрологического обеспечения проведения испытаний. Для инженерно-технических работников, разрабатывающих и эксплуатирующих летательные аппараты и студентов соответствующих специальностей. Также книга может быть полезна широкому кругу читателей.Документ Молния и летательные аппараты. Том 2(ТОВ "Цифра Прінт", 2021) Кравченко, Владимир Иванович; Князев, Владимир ВладимировичС современных позиций рассмотрены процессы поражающих воздействий и дестабилизирующих влияний грозовых разрядов на летательные аппараты – объекты ракетно-космической техники, самолеты и вертолеты. Содержатся материалы по анализу основных грозовых факторов, влияющих на поражение молнией летательных аппаратов в процессе их эксплуатации. Для инженерно-технических работников, разрабатывающих и эксплуатирующих летательные аппараты и студентов соответствующих специальностей. Также книга может быть полезна широкому кругу читателей.Документ Науково-технічні підходи до вирішення актуальних проблем розбудови сектору безпеки і оборони(Друкарня Мадрид, 2021) Чепков, Ігор Борисович; Бісик, Сергій Петрович; Миронюк, О. Ю.; Сливінський, Олексій Анатолійович; Давидовський, Леонід Сергійович; Миронов, Я. А.; Марченко, Андрій Петрович; Кравченко, Сергій Сергійович; Лісачук, Георгій Вікторович; Зінченко, С. В.; Пітак, Ярослав Миколайович; Кривобок, Руслан Вікторович; Захаров, Артем Вячеславович; Чефранов, Євген Вікторович; Волощук, Валентина Василівна; Майстат, М. С.; Буряковський, Сергій Геннадійович; Волонцевич, Дмитро Олегович; Любарський, Борис Григорович; Тищенко, Анна Анатоліївна; Князєв, Володимир Володимирович; Каракуркчі, Ганна Володимирівна; Сахненко, Микола Дмитрович; Майба, Марина Володимирівна; Горохівський, Андрій Сергійович; Карножицький, Павло Володимирович; Мірошниченко, Денис Вікторович; Руднєва, Катерина Євгенівна; Руднєв, В. А.; Сініцина, А. О.; Шевченко, Сергій Юрійович; Данильченко, Дмитро Олексійович; Дривецький, Станіслав Ігорович; Ткачук, Микола Анатолійович; Кравченко, Сергій Олександрович; Ткачук, Микола Миколайович; Грабовський, Андрій Володимирович; Веретельник, Олег ВікторовичРозглянуто актуальні проблеми створення сучасного озброєння та військової техніки, а також наведено інформацію про актуальні проблеми протимінного та балістичного захисту бойових броньованих машин. Наведено дані щодо перспективних електротехнічних систем, що додають динамічності та надійності легкоброньованій техніці. Проаналізовано чинники впливу діяльності людини у військовій сфері на екологію та представлено шляхи покращення екологічної безпеки країни за рахунок сучасних розробок. Представлено результати досліджень, спрямованих на вивчення і розробку імітаторів магнітного поля блискавки та забезпечення електропостачанням військових об'єктів. Колективну монографію призначено для ознайомлення широкого кола науковців та фахівців, що працюють в секторі безпеки і оборони, з результатами власних досліджень авторського колективу.Документ Установка для випробування трансформаторної оливи УИМ – 90 з електронним блоком підйому напруги(Національний технічний університет "Харківський політехнічний інститут", 2021) Богатирьов, Ігор Миколайович; Понуждаєва, Олена Геннадіївна; Коліушко, Денис Георгійович; Руденко, Сергій Сергійович; Істомін, Олександр ЄвгенійовичДля проведення випробувань відповідно до методики визначення пробивної напруги рідких діелектриків використовуються високовольтні установки, основними частинами яких є високовольтний трансформатор, блок підйому напруги, випробувальна комірка з електродами та ін. Описано установку для випробування трансформаторної оливи УИМ – 90 з електромеханічним блоком підйому напруги. У зв`язку з жорсткими вимогами нормативних документів до форми синусоїди напруги на електродах комірки, проведено натурні випробування УИМ – 90, які дозволяють оцінити вплив якості мережевої напруги на спотворення випробувальної напруги та точність вимірювань. Виявлено, що при використанні електромеханічного блоку підйому напруги перепади напруги мережі спотворюють форму синусоїди пропорційно коефіцієнту трансформації підвищувального трансформатора. Проведеним аналізом конструкції цього блоку виявлено, що використання ЛАТРа та механічного регулятора напруги може викликати додаткові спотворення форми синусоїди. Прийнято рішення про розробку електронного блоку підйому напруги, який дозволить виключити вплив мережі на результати випробувань. Створено алгоритм формування сигналу від мікроконтролера, що генерує лінійно наростаючу напругу, до підсилювача, який являє собою широтно-імпульсний модулятор, далі, до каскаду підвищувальних трансформаторів. Запропоновано використовувати додатковий трансформатор для узгодження рівнів вихідної напруги підсилювача та вхідної напруги основного підвищувального трансформатора. Наведено функціональну схему УИМ – 90 з електронним блоком підйому напруги та каскадним включенням підвищувальних трансформаторів. Наведені осцилограма напруги та її спектрограма на первинній обмотці основного трансформатора, отримані в результаті реалізації розробленого електронного блоку підйому напруги, демонструють незалежність форми синусоїди напруги від якості мережі. Проаналізувавши технічні характеристики модернізованого УИМ – 90 та світових аналогів, можна зробити висновок про його конкурентоспроможність на міжнародному рівні.Документ Математичне моделювання перехідних процесів в електроприводі стрілочного переводу моношпального типу з вентильно-індукторним двигуном(Національний технічний університет "Харківський політехнічний інститут", 2021) Буряковський, Сергій Геннадійович; Маслій, Артем Сергійович; Асмолова, Лариса Валеріївна; Гончарук, Наталія ТрохимівнаРобота присвячена розвитку функціональності залізничного стрілочного переводу шляхом впровадження вентильно-індукторного електроприводу. Таке рішення дає обґрунтування для спрощення механічної частини стрілочного переводу шляхом заміни редуктора на кульково-гвинтову пару, а також розмістити усю кінематичну лінію стрілочного переводу на одній шпалі. Наведено математичний опис чотирифазного вентильно-індукторного двигуна, та спрощеної механічної лінії стрілочного переводу у вигляді одномасової електромеханічної системи. Розроблена імітаційна математична модель електроприводу стрілочного переводу моношпального типу як система підлеглого керування з вентильно-індукторним двигуном, яка враховує нелінійну характеристику навантаження. Наведено результати комп’ютерного моделювання з ПІД та нечітким регулятором швидкості, які показали, що нечіткий ПІД регулятор більш якісно відпрацьовує задані величини та переміщення гостряків.Документ Випробування зразків озброєння та військової техніки за параметрами електромагнітної сумісності(Український науково-дослідний і навчальний центр проблем стандартизації, сертифікації та якості, 2020) Князєв, Володимир ВолодимировичУ статті розглянуто проблему, що стосується визначення стратегії впровадження в Україні вимог з електромагнітної сумісності до зразків озброєння та військової техніки. Подано аналізування сучасних вимог відповідних стандартів НАТО, військових стандартів США, цивільних міжнародних та регіональних стандартів у галузі ЕМС. Надано пропозиції щодо послідовності введення в обіг вимог рекомендованих стандартів з урахуванням фактичних та перспективних можливостей випробувальних лабораторій України.Документ Молния и летательные аппараты. Том 1(ТОВ "Цифра Прінт", 2020) Кравченко, Владимир Иванович; Князев, Владимир ВладимировичРассмотрены процессы формирования грозовых явлений и дана современная классификация видов молний. Содержатся материалы по определению параметров грозовой электромагнитной обстановки и номенклатуре внешних воздействующих факторов электромагнитного поля грозовых разрядов, оказывающих поражающие воздействия и дестабилизирующие влияния на летательные аппараты. Для инженерно-технических работников, разрабатывающих и эксплуатирующих летательные аппараты и студентов соответствующих специальностей. Также книга может быть полезна широкому кругу читателей.