Вісники НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494
З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.
Переглянути
5 результатів
Результати пошуку
Документ Аналіз особливостей умов роботи сучасних лопаток газових турбін та огляд методів визначення параметрів їх високотемпературної міцності(Національний технічний університет "Харківський політехнічний інститут", 2024) Неманежин, Євген ОлександровичПредметом дослідження є сучасні методи та матеріали для виготовлення лопаток газових турбін, а також підходи та методи оцінки показників їх динамічної та статичної міцності в умовах високотемпературного навантаження. Проаналізовані літературні джерела, що стосуються методів виготовлення лопаток турбін, а саме спрямованої кристалізації та монокристалічного лиття. Підкреслені переваги монокристалічних сплавів для виготовлення лопаток турбін, а саме підвищені жароміцність, жаростійкість, втомна міцність, довговічність та тріщиностійкість. Проаналізовані та описані основні сучасні методи оцінки високотемпературної міцності лопаток газових турбін з урахуванням анізотропних характеристик монокристалічних сплавів. У наведеній публікації представлено відомості про лопатки газових турбін, зокрема, надано змістовну інформацію про методи їх виготовлення, а також матеріали, що використовуються для їх отримання. У дослідженні проаналізовано та визначено основні пошкоджуючі впливи, що діють на лопатки газових турбін в процесі їх експлуатації. У матеріалі зазначені досягнення науковців, які розробили чисельні та експериментальні методи для оцінювання впливу анізотропних характеристик монокристалічних нікелевих жароміцних сплавів на показники втомної міцності, довговічності та повзучості лопаток турбін.Документ Розробка програмного рішення прикладної задачі механіки на основі чисельних методів(Національний технічний університет "Харківський політехнічний інститут", 2023) Васильченко, Нікіта Андрійович; Шаповалова, Марія Ігорівна; Федоров, Віктор Олександрович; Овчаренко, Віталій ВолодимировичУ роботі розглядається питання важливості вибору матеріалів для виробництва інструментів у фрезерній справі та визначення їхньої придатності шляхом детального аналіз міцності та поведінки під час обробки матеріалів. Для покращення довговічності та оптимізації виробництва, пропонується використовувати математичні моделі та чисельні методи, зокрема метод найменших квадратів та метод вирішення систем лінійних алгебраїчних рівнянь (СЛАУ) за допомогою методу Гауса з вибором головного елементу. Ці методи застосовуються для апроксимації експериментальних даних та аналізу характеристик матеріалу, забезпечуючи точність в оцінці його властивостей. Досліджено ситуації встановлення функції, коли лише деякі значення відомі, а також спрощення обчислень відомих функцій. Робота включає програмне забезпечення для чисельного розрахунку та візуалізації різних типів задач, які успішно вирішуються за допомогою розглянутих методів. Програмний алгоритм для апроксимації даних передбачає збереження інформації у текстовому файлі, введення користувачем кількості змінних та обрання кількості та типу базисних функцій. Після введення користувачем параметрів програма формує систему рівнянь на основі обраних функцій, визначає коефіцієнти апроксимації та будує графік для об'єктивної оцінки результатів. Завдяки зручному інтерфейсу користувач може легко взаємодіяти з програмою, шляхом введення значень. Аналіз результатів здійснюється за допомогою графічного відображення, що спрощує робочий процес та полегшує сприйняття отриманих даних. Апроксимація функцій за допомогою чисельних методів може бути ефективно використана в різних сферах для вирішення прикладних задач механіки.Документ Застосування обчислювальних методів у задачах аеробалістики. Визначення cпряжених кутів кидання та побудова балістичних траєкторій(Застосування обчислювальних методів у задачах аеробалістики. Визначення cпряжених кутів кидання та побудова балістичних траєкторій, 2023) Федотов, Денис Сергійович; Овчаренко, Віталій Володимирович; Федоров, Віктор ОлександровичВивчена задача аеробалістики артилерійських нереактивних снарядів на прикладі спрощеної математичної моделі. Як окремі підзадачі розглянуті: початкова задача, визначення горизонтальної дальності пострілу (метод Рунге-Кутти 4-го порядку з модифікацією поліноміальної інтерполяції); задача оптимізації (метод Пауелла), визначення кутів максимальної дальності — кутів кидання, при яких досягається максимальна горизонтальна дальність; крайова задача (метод стрільби з методом Ньютона-Рафсона/ методом січних/ методом поліноміальної інтерполяції), визначення кутів кидання при заданій відстані та задача знаходження спряжених траєкторій — настильної та навісної траєкторій, при яких досягається однакова горизонтальна дальність польоту снаряда при різних кутах кидання; обернена задача геодезії (метод Вінсенті), визначення геодезичної відстані між двома географічними точками на несферичній моделі Землі WGS-84. Графічно проілюстровані залежності від кутів кидання наступних характеристик: горизонтальна та вертикальна дальності, максимальна вертикальна та горизонтальна складова швидкості, модуль кінцевої швидкості, кут падіння та час польоту снарядів. Обґрунтовано існування спряжених траєкторій та визначено стратегію для інтервального запуску снарядів з метою одночасного враження цілі по різних траєкторіях. Програмування обчислювальних методів, алгоритму розв’язання поставленої задачі та елементи візуалізації були реалізовані за допомогою пакету прикладних програм MATLAB, розроблена методика та програмне забезпечення показали ефективність та можливість їх практичного застосування.Документ Ідентифікація кривих розділу сильно контрастних середовищ методами комплексного аналізу(Стильна типографія, 2023) Бомба, Андрій Ярославович; Каштан, С. С.При моделюванні процесів масопереносу (наприклад, фільтрації) в пористих середовищах можливі випадки існування сильно проникних шарів, які відокремлюються від відповідних досліджуваних частин деякими кривими, які потрібно знайти (ідентифікувати) в процесі розв’язування задачі. При побудові математичної моделі відповідного фізичного процесу вважатимемо сильно проникне середовище «ідеально (теоретично нескінченно) проникним». У цьому випадку шукану криву можна вважати еквіпотенціальною лінією. У цій роботі розглядається стаціонарний процес руху рідини в однорідному горизонтальному нескінченно великих розмірів пласті – ґрунтовому масиві, що обмежений нескінченними ділянками кривих, зокрема – шуканою кривою теоретичного водоупору та горизонтальною віссю, на якій відома локальна швидкість руху. На основі методів конформних відображень та сумарних зображень запропоновано підхід до ідентифікації кривої розділу середовищ. Побудований алгоритм модифіковано для розв’язування нелінійних обернених крайових задач на квазіконформні відображення криволінійних багатокутних областей, обмежених невизначеними лініями течії та еквіпотенціальними лініями. Особливість запропонованої методики полягає в тому, що формули сумарних зображень забезпечують можливість представити розв’язок локалізованої лінійної (основної) частини отриманої системи рівнянь у явному вигляді, де невідомі коефіцієнти знаходяться шляхом розв’язання нелінійних систем, породжених лише граничними умовами та числовими аналогами умов Коші – Рімана.Документ Using of multilayer neural networks for the solving systems of differential equations(Національний технічний університет "Харківський політехнічний інститут", 2021) Marchenko, Natalia Andriyivna; Sydorenko, Ganna Yurijivna; Rudenko, Roman OleksandrovychThe article considers the study of methods for numerical solution of systems of differential equations using neural networks. To achieve this goal, the following interdependent tasks were solved: an overview of industries that need to solve systems of differential equations, a s well as implemented a method of solving systems of differential equations using neural networks. It is shown that different types of systems of differential equations can be solved by a single method, which requires only the problem of loss function for optimization, which is directly created from differential equations and does not require solving equations for the highest derivative. The solution of differential equations’ system using a multilayer neural networks is the functions given in analytical form, which can be differentiated or integrated analytically. In the course of this work, an improved form of construction of a test solution of systems of differential equations was found, which satisfies the initial conditions for construction, but has less impact on the solution error at a distance from the initial conditions compared to the form of such solution. The way has also been found to modify the calculation of the loss function for cases when the solution process stops at the local minimum, which will be caused by the high dependence of the subsequent values of the functions on the accuracy of finding the previous values. Among the results, it can be noted that the solution of differential equations’ system using artificial neural networks may be more accurate than classical numerical methods for solving differential equations, but usually takes much longer to achieve similar results on small problems. The main advantage of using neural networks to solve differential equations` system is that the solution is in analytical form and can be found not only for individual values of parameters of equations, but also for a ll values of parameters in a limited range of values.