Вісники НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494
З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.
Переглянути
10 результатів
Результати пошуку
Документ Особливості розрахунку систем охолодження газових турбін(Національний технічний університет "Харківський політехнічний інститут", 2023) Тарасов, Олександр Іванович; Литвиненко, Оксана Олексіївна; Михайлова, Ірина Олександрівна; Ісмайлов, Владислав Олександрович; Науменко, Світлана ПетрівнаСистеми охолодження газових турбін мають розгалужені мережи різноманітних каналів, гідравлічні та теплообмінні можливості яких визначають необхідну витрату повітря для охолодження деталей турбін і, таким чином, безпосередньо впливають на економічність ГТУ. Елементами систем охолодження, зокрема, є дроселі, діафрагми, ущільнення, отвори, які є регулюючими органами, або елементами, які піддержують тиск в системі. У каналах такого типу, як правило, має місто значне падіння тиску і тому при розрахунках потрібно дуже прискіпливо враховувати зміну щільності повітря уздовж каналу. Тому тут наведено розроблений авторами метод визначення гідравлічного опору в отворах, який дуже добре збігається з експериментальними даними. Показано, як слід враховувати стисливість повітря на коефіцієнт гідравлічного опору каналів охолодження, що дозволяє застосовувати численні експериментальні залежності для коефіцієнтів гідравлічного опору нестисливих рідин. Запропоновано метод розрахунку гідравлічних опорів отворів шляхом дефрагментації їхнього загального гідравлічного опору на окремі компоненти. Створено узагальнену залежність для гідравлічного опору розвантажувальних отворів у дисках, у монтажних зазорах між хвостовиками лопаток та дисками з урахуванням поперечних потоків повітря.Документ Методика визначення повних втрат в соплових решітках турбомашин(Національний технічний університет "Харківський політехнічний інститут", 2023) Лапузін, Олександр Вікторович; Суботович, Валерій Петрович; Юдін, Юрій Олексійович; Науменко, Світлана ПетрівнаДля оцінки рівня аеродинамічної ефективності соплових решіток парових і газових турбін запропонований метод, в якому замість коефіцієнта втрат кінетичної енергії визначається коефіцієнт повних втрат, який враховує як втрати кінетичної енергії так і кінематичні втрати. Цей метод перетворює вихідний нерівномірний просторовий потік за решіткою у вісесиметричний циліндричний. В протестованій кільцевій решітці з циліндричними меридіональними границями коефіцієнт повних втрат приблизно на 0,02 перевищує коефіцієнт втрат кінетичної енергії. Врахування кінематичних втрат при виконанні теплових розрахунків турбін відкидає необхідність не зовсім обґрунтованого корегування коефіцієнта втрат кінетичної енергії соплової решітки на 0,01 –0,03, що підвищує точність розрахунків.Документ Дослідження впливу тангенціальної нерівномірності параметрів потоку на газодинамічні характеристики соплових решіток турбомашин(Національний технічний університет "Харківський політехнічний інститут", 2022) Лапузін, Олександр Вікторович; Суботович, Валерій Петрович; Юдін, Юрій Олексійович; Науменко, Світлана Петрівна; Малимон, Іван ІвановичАеродинамічна ефективність соплових решіток парових і газових турбін визначається багатьма факторами, одним з яких є степінь нерівномірності у тангенціальному і радіальному напрямках параметрів просторового потоку за решітками. В процесі усереднення цих параметрів визначаються інтегральні характеристик решіток: два кути потоку, коефіцієнт швидкості або коефіцієнт втрат кінетичної енергії. Кут, що враховує рівень усередненої радіальної складової швидкості, визначає рівень кінематичних втрат у решітці. Навіть за циліндричних меж решітки цей кут відрізняється від нуля, а кінематичні втрати зменшують ефективність решітки на 30 % – 50 %. У статті наведені результати експериментального дослідження впливу тангенціальної нерівномірності швидкості та кутів просторового потоку на кінематичні втрати на різних радіусах соплової решітки останнього ступеня парової турбіни і соплової решітки першого ступеня газової турбіни.Документ Витратні характеристики соплової решітки в умовах сумісної роботи з радіальним дифузором(Національний технічний університет "Харківський політехнічний інститут", 2021) Лапузін, Олександр Вікторович; Суботович, Валерій Петрович; Юдін, Юрій Олексійович; Науменко, Світлана Петрівна; Малимон, Іван ІвановичПредставлені результати дослідження кільцевих соплових решіток малорозмірної газової турбіни середньої віяловості разом з радіальним дифузором. Завдяки використанню дифузора зі ступенем розширення 2,37 і компресора зі ступенем стиску 2,0 аеродинамічні характеристики решіток визначені в широкому діапазоні зміни числа Рейнольдса від 4∙105 до 106 і приведеної швидкості від 0,4 до 1,13. Коефіцієнт витрати соплових решіток знайдений на всіх режимах за інтегральною методикою з використанням дренажів за решіткою. Коефіцієнт втрат кінетичної енергії й кути потоку обчислені на підставі виміру параметрів потоку на трьох контрольних режимах за допомогою орієнтуємих пневмометричних зондів.Документ Определение расхода топливного газа в газоперекачивающем агрегате с газотурбинным приводом и центробежным нагнетателем(Національний технічний університет "Харківський політехнічний інститут", 2020) Олейник, Юрий Анатольевич; Сапрыкин, Сергей Алексеевич; Науменко, Светлана ПетровнаРазработан алгоритм расчета расхода топливного газа на газоперекачивающем агрегате (ГПА) с газотурбинным приводом (ГТП) и центробежным нагнетателем (ЦБН). В алгоритме учитываются ограничения параметров ГПА: минимальный расход газа в ЦБН, минимальная мощность ГТП, максимальная температура и степень сжатия газа в ЦБН. Дополнительно разработан алгоритм определения числа рабочих ГПА при задании общего расхода перекачиваемого газа для n однотипных ГПА.Документ Теплофізичний експеримент в системі освіти магістрів теплотехнічних спеціальностей(Національний технічний університет "Харківський політехнічний інститут", 2020) Тарасов, Олександр Іванович; Литвиненко, Оксана Олексіївна; Михайлова, Ірина Олександрівна; Науменко, Світлана ПетрівнаПроведення теплофізичних експериментів стало явищем надзвичайно рідкісним в силу їх дорожнечі, складності, тривалості підготовки і проведення. Найчастіше викладачі університету схиляються до комп'ютерного моделювання тих чи інших технічних процесів для поглибленого формування знань студентів. Причина такого вибору очевидна – це наочність і відносно швидке досягнення мети. Негативна сторона такого вибору – це відсутність здібностей у майбутніх фахівців оцінити надійність тих чи інших експериментальних залежностей між фізичними параметрами процесів, які використовуються для проектування машин. Для усунення цього недоліку навчального процесу була створена малогабаритна аеродинамічна труба і розроблена детальна методика проведення експерименту і обробки експериментальних даних. Довжина робочої ділянки труби дорівнювала 0,5 м, прямокутний поперечний переріз каналу труби дорівнювало 0,35×0,15 м2 . Тепловіддача вивчалася на нижній стінці аеродинамічної труби, на якій вздовж течії повітря були встановлені три нагрівальні елементи. Нагрівальні елементи представляли собою смужки з константану перетином 10×0,11 мм2, на нижній поверхні яких були закріплені термопари. Максимальне значення локального числа Рейнольдса було Rex < 105, тобто практично на всій поверхні розвивався ламінарний пограничний шар. При обробці результатів експериментів були враховані радіаційні втрати теплоти і втрати теплоти теплопровідністю уздовж нагрівальних елементів. Однак значення інтенсивності тепловіддачі виявилися в 3–4 рази більше, ніж при ламінарному режимі течії. В результаті чисельного аналізу теплового стану експериментальної пластини були визначені втрати теплоти, які раніше не враховувалися. В результаті було досягнуто практично повний збіг експериментальних значень інтенсивності тепловіддачі з розрахованими значеннями по надійному рівнянню подоби. Проведене дослідження є необхідним для формування компетенції магістрів теплотехнічних спеціальностей.Документ Потужність приводу відцентрового нагнітача природного газу(Національний технічний університет "Харківський політехнічний інститут", 2020) Олійник, Юрій Анатолійович; Саприкін, Сергій Олексійович; Науменко, Світлана ПетрівнаОтримано формули для потужності приводу відцентрового нагнітача (ВЦН) природного газу, де враховується не тільки механічний та політропний коефіцієнт корисної дії (ККД) ВЦН, але й газодинамічний ККД ВЦН, де враховуються газодинамічні втрати тиску газу та потужності ВЦН. Також в формулі розрахунку потужності приводу ВЦН, що експлуатується, враховується наявність парів конденсату та води в природному газі.Документ Методы определения КПД центробежного нагнетателя с учетом потерь энергии(Национальный технический университет "Харьковский политехнический институт", 2019) Олейник, Юрий Анатольевич; Сапрыкин, Сергей Алексеевич; Науменко, Светлана ПетровнаПолучены три метода определения коэффициента полезного действия (КПД) центробежного нагнетателя (ЦБН), где кроме тепловых потерь и потерь на трение в подшипниках и уплотнениях ЦБН учитываются потери энергии для следующих процессов: трение рабочего колеса ЦБН в газовой среде, перетекание газа через уплотнения ЦБН, движение газа в межступенчатых полостях ЦБН. Методы учитывают три различных подхода к расчету потерь энергии, связанных с движением газа в межступенчатых полостях ЦБН. Рассчитаны практические значения для КПД ЦБН по полученным методам.Документ Определение КПД привода центробежного и поршневого компрессора(НТУ "ХПИ", 2018) Олейник, Юрий Анатольевич; Праско, Александр Владимирович; Османова, Елена Георгиевна; Науменко, Светлана ПетровнаПолучена формула коэффициента полезного действия (КПД) привода центробежного и поршневого компрессора, учитывающая адиабатную работу сжатия газа, потери на трение в подшипниках компрессора и потери давления газа в компрессоре. Показано, как учет потерь давления газа в компрессоре увеличивает КПД привода компрессора. На практических расчетах показано, что КПД привода, зависящее от потерь давления газа в компрессоре, может достигать значений порядка 0,01 в центробежном компрессоре и порядка 0,02 в поршневом компрессоре.Документ Анализ методов определения политропного КПД центробежного нагнетателя(НТУ "ХПИ", 2018) Олейник, Юрий Анатольевич; Сапрыкин, Сергей Алексеевич; Науменко, Светлана ПетровнаПроанализированы математические модели определения политропного коэффициента полезного действия (КПД) центробежного нагнетателя (ЦБН). Описаны четыре метода определения политропного КПД ЦБН и проведены практические расчеты политропного КПД и коэффициента адиабаты по всем методам. Определен самый простой и точный метод определения политропного КПД ЦБН. Значения коэффициентов адиабаты можно использовать при определении политропного КПД ЦБН после определения коэффициента политропы ЦБН.