Вісники НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2494
З 1961 р. у ХПІ видається збірник наукових праць "Вісник Харківського політехнічного інституту".
Згідно до наказу ректора № 158-1 від 07.05.2001 року "Про упорядкування видання вісника НТУ "ХПІ", збірник був перейменований у Вісник Національного Технічного Університету "ХПІ".
Вісник Національного технічного університету "Харківський політехнічний інститут" включено до переліку спеціалізованих видань ВАК України і виходить по серіях, що відображають наукові напрямки діяльності вчених університету та потенційних здобувачів вчених ступенів та звань.
Зараз налічується 30 діючих тематичних редколегій. Вісник друкує статті як співробітників НТУ "ХПІ", так і статті авторів інших наукових закладів України та зарубіжжя, які представлені у даному розділі.
Переглянути
13 результатів
Результати пошуку
Документ Ідентифікація довільного рухомого осесиметричного навантаження, що діє на циліндричну оболонку(Національний технічний університет "Харківський політехнічний інститут", 2024) Воропай, Олексій Валерійович; Поваляєв, Сергій Іванович; Шарапата, Андрій СергійовичНа різні елементи конструкцій та циліндричні оболонки скінченної довжини зокрема можуть діяти різні види зовнішнього нестаціонарного навантаження: розподілене та зосереджене, нерухоме та рухоме. При застосуванні різних методів ідентифікації зовнішнього навантаження, зазвичай, тип зовнішнього навантаження відомий. На практиці це не завжди так. Метою дослідження є розробка методу ідентифікації довільного осесиметричного навантаження, що діє на пружну циліндричну оболонку скінченної довжини, який може бути застосований при ідентифікації рухомого навантаження. Для моделювання нестаціонарного навантаження циліндричної оболонки була використана система диференціальних рівнянь уточненої теорії оболонок середньої товщини типу Тимошенка. Розв’язок цієї системи диференціальних рівнянь отримано шляхом розкладання невідомих функцій у ряди Фур’є та застосування інтегрального перетворення Лапласа. Розв’язок відповідної оберненої задачі був отриманий з використанням теорії інтегральних рівнянь та методу регуляризації Тихонова. В результаті дослідження отримано розв’язок оберненої задачі механіки деформівного твердого тіла з ідентифікації довільного осесиметричного нестаціонарного навантаження. Проведено числовий експеримент з використання розробленого методу при ідентифікації рухомого нестаціонарного навантаження, що діє на шарнірно обперту циліндричну оболонку середньої товщини. Результати моделювання свідчать про досить точну ідентифікацію як зміни в часі, так і розподілу вздовж оболонки нестаціонарного осесиметричного рухомого навантаження. Розроблено метод ідентифікації зовнішнього нестаціонарного навантаження, яке довільно розподілено вздовж циліндричної оболонки. Описаний метод дозволяє ідентифікувати рухоме навантаження без попередньої інформації про тип цього навантаження, а також відтворювати рухомі нестаціонарні навантаження, що часто зустрічаються на практиці та розширити його на інші види елементів конструкцій.Документ Обернена задача для балки Тимошенко з додатковою в’язко-пружною опорою при нестаціонарному деформуванні(Стильна типографія, 2023) Воропай, Олексій Валерійович; Поваляєв, Сергій Іванович; Єгоров, Павло АнатолійовичРозглядається нестаціонарне навантаження механічної системи, яка складається з балки, шарнірно-обпертої по краях, і додаткової опори, встановленої в прольоті балки. Деформування балки моделюється на основі гіпотез С. П. Тимошенка з урахуванням інерції обертання та зсуву. Деформування балки описується системою диференціальних рівнянь у частинних похідних, яка розв’язується аналітично за допомогою розкладання шуканих функцій у відповідні ряди Фур’є і подальшого використання інтегрального перетворення Лапласа. Передбачається, що додаткова опора має лінійно-пружну і лінійно-в’язку складові, а в точці приєднання додаткової опори до балки переміщення збігаються. Реакція між балкою та додатковою опорою замінюється зовнішньою невідомою зосередженою силою, прикладеною до балки та є змінною у часі. Закон зміни у часі цієї невідомої реакції визначається з інтегрального рівняння Вольтерра. Викладається розв’язання оберненої задачі механіки деформівного твердого тіла, тобто передбачається, що нам відома зміна в часі прогину в деякій точці балки з додатковою опорою, а закон зміни в часі зовнішнього імпульсного навантаження, що викликав ці зміни прогину, є невідомим. Точка прикладення зовнішнього збурюючого навантаження і точка приєднання додаткової опори вважаються відомими і не змінюються в процесі деформування (при розв’язанні задачі передбачалося, що це можуть бути будь-які точки балки за винятком її країв). Описана обернена задача зводиться до системи двох інтегральних рівнянь Вольтерра першого роду щодо невідомих зовнішнього збурюючого навантаження і реакції між пластиною і додатковою опорою, яка розв’язується аналітично-числовим методом. Наведено аналітичні співвідношення та результати обчислень для конкретних числових параметрів. Результати, отримані в даній роботі, можуть бути використані для непрямого вимірювання імпульсних і ударних навантажень, що діють на балки з додатковими опорами, для яких враховуються не тільки пружні, але і лінійно-в’язкі характеристики.Документ Динамічний аналіз позиційних пневмоагрегатів(Національний технічний університет "Харківський політехнічний інститут", 2019) Фатєєв, Олександр Миколайович; Фатєєва, Надія Миколаївна; Шевченко, Наталія ГригорівнаРозглянуто аналіз динаміки позиційного пневмоагрегата, реалізованого на дискретній апаратурі. Для цього розроблено математичну модель роботи системи позиційних пневмоагрегатів з програмованими електронними блоками управління, що дозволяє враховувати особливості системи пневмоагрегатів, й включає математичні моделі виконавчого механізму, модель ліній управління й модель системи управління з врахуванням реального масштабу часу. В результаті досліджень розроблено методику оцінки функціональних можливостей пневмоагрегата, з точки зору його динаміки, що дозволяє оцінити в якій мірі даний пневмоагрегат може забезпечити виконання потрібних за технологічним процесом характеристик, таких як: швидкодія, вантажопідйомність, точність відпрацювання задаючого сигналу та ін. Ця задача була вирішена на базі зворотної задачі динамічного розрахунку пневмоагрегата, яка полягала в знаходженні конструктивних параметрів за заданими технічними характеристиками, для цього була визначена функція позиціювання, що описується для семи та одинадцяти інтервалів руху і яка відповідає таким вимогам позиційного пневмоагрегата: нерозривність значень основних параметрів руху – переміщення, швидкості, прискорення; стійкість розгону і гальмування, що полягає в рівності нулю значень швидкості і прискорення в початковий і кінцевий моменти руху; мінімальність перевантажень, що складається в забезпеченні мінімальності значень прискорення протягом усього періоду руху пневмоагрегата; максимальна продуктивність, що полягає в забезпеченні мінімальності часу руху. На підставі функції позиціювання отримано закони руху вихідної ланки позиційного пневмоагрегата, що дозволяє забезпечити задані технічні характеристики, та забезпечує плавний розгін вихідної ланки пневмоагрегата, потім його рух із постійною швидкістю та плавне гальмування із зупинкою в точці позиціювання. Для використання отриманих результатів при проектуванні розроблена програма в середовищі MATLAB.Документ Управление нестационарными колебаниями пластины c присоединённой сосредоточенной массой. Активная виброзащита(Национальный технический университет "Харьковский политехнический институт", 2019) Воропай, Алексей ВалериевичМеханическая система состоит из прямоугольной изотропной пластины средней толщины, шарнирно-опёртой по контуру, и присоединённой к ней сосредоточенной массы. На пластину воздействует нестационарное нагружение, вызывающее колебания. Влияние сосредоточенной массы моделируется дополнительной нестационарной сосредоточенной силой (реакцией), приложенной к пластине в точке контакта вместо массы. Управление колебаниями осуществляется с помощью введения дополнительной (управляющей) нагрузки, закон изменения во времени которой подлежит определению. Излагаются результаты решения обратной задачи идентификации управляющего воздействия. Исследования сводятся к анализу системы интегральных уравнений Вольтерра, которые решаются численно с использованием регуляризирующего алгоритма А. Н. Тихонова. Приведены примеры расчетов по определению управляющих воздействий в задачах активного управления нестационарными колебаниями пластины с дополнительной сосредоточенной массой, а также их гашения.Документ Нестационарные колебания струн и их систем, контактирующих с различными сосредоточенными нагрузками(НТУ "ХПИ", 2016) Воропай, Алексей Валериевич; Малахов, Евгений СергеевичРассматриваются нестационарные колебания струн и их систем, вызванные конечным количеством сосредоточенных нагрузок. Нестационарными нагрузками могут моделироваться внешние силы, также реакции, соответствующие влиянию сосредоточенных масс или демпферов. Для системы струн, пересекающих одну общую, строится обобщенная схема исследования. Излагается методика построения системы уравнений, состоящей из одномерных волновых уравнений для некоторого произвольного количества струн, которая замыкается дополнительными соотношениями в точках контакта. Полученная система является системой интегральных уравнений Вольтерра, которая после дискретизации сводится к блочной системе линейных уравнений. В качестве примера решается задача о нестационарных колебаниях струны с двумя присоединенными демпферами.Документ Идентификация граничных условий теплообмена турбины по результатам испытаний(НТУ "ХПИ", 2015) Марценюк, Евгений Викторович; Зелёный, Юрий Алексеевич; Резник, Сергей Борисович; Климик, Ростислав Ростиславович; Кулик, Тамара ВасильевнаРешена задача по определению граничных условий конвективного теплообмена для корпуса турбины на основе результатов испытаний авиационного двигателя. Достигнуто повышение точности расчетов граничных условий 3-го рода по удельному тепловому потоку при сложном характере течения окружающей среды. Для этого введена поправка к расчетному значению коэффициентов теплоотдачи, учитывающая теплообмен внутри детали посредством теплопроводности материала. Выполнено сравнение восстановленного поля температур корпуса турбины с экспериментальными данными.Документ Уравнение неразрывности для течения в слое переменной толщины на поверхности S₂(НТУ "ХПИ", 2014) Субботович, Валерий Петрович; Юдин, Александр ЮрьевичРассмотрено относительное установившееся течение идеального газа через рабочую решетку осевой турбомашины. Для получения приближенного решения используется квазитрехмерный (Q3D) подход, который в своей классической постановке был всесторонне разработан Ч. Х. Ву. Поток разделен на слои поверхностями S₁ и S₂. Поверхности S₁ не имеют оси симметрии, которая совпадает с осью турбомашины. Трехмерное течение на поверхности S₂ сведено к двумерному течению без допущения о том, что течение является осесимметричным.Документ Проектирование многоступенчатых центробежных насосов на основе решения обратной и прямой гидродинамической задачи(НТУ "ХПИ", 2014) Косторной, А. С.; Бондарев, А. О.Обоснованная математическая модель (ММ) течения жидкости в проточной части (ПЧ) лопастной гидравлической машины (ГМ) (турбины или насоса) способствует развитию методов их проектирования и определения гидродинамических параметров для целенаправленного совершенствования энергетических, кавитационных и силовых характеристик на этапе проектирования, что значительно сокращает сроки выполнения технического задания и заменяет дорогостоящий физический эксперимент вычислительным.Документ Расчет турбинной ступени по зазорам как решение обратных аэродинамических задач в свободных кольцевых каналах(НТУ "ХПИ", 2014) Субботович, Валерий Петрович; Юдин, Александр Юрьевич; Темченко, Сергей АлександровичПредставлены результаты сравнения расчетов ступени осевой турбины с данными ее экспериментальных исследований. Расчеты выполнены с помощью нового метода расчета осесимметричного течения в свободных кольцевых каналах. Кольцевой канал рассматривается как чередующиеся участки двух типов: свободные участки и участки, загроможденные некоторыми устройствами, способными изменять углы закрутки потока. Получено хорошее совпадение расчетных и экспериментальных значений параметров потока.Документ Обратная задача для шарнирно-опертой пластины с дополнительной упругой опорой при нестационарном нагружении(НТУ "ХПИ", 2013) Воропай, Алексей Валериевич; Шупиков, А. Н.Механическая система состоит из прямоугольной пластины средней толщины шарнирно-опертой по контуру и дополнительной сосредоточенной упругой опоры. На пластину воздействует неизвестное нестационарное нагружение, вызывающее колебания. Решается обратная задача по идентификации неизвестного нагружения по известным изменениям во времени прогиба точек пластины. Также рассматривается возможность определения жесткости дополнительной упругой опоры.