Публікація:
System for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network

dc.contributor.authorKirichek, Galina
dc.contributor.authorHarkusha, Vladyslav
dc.contributor.authorTimenko, Artur
dc.contributor.authorKulykovska, Nataliia
dc.date.accessioned2024-10-25T07:48:37Z
dc.date.issued2019
dc.description.abstractIn this article realization method of attacks and anomalies detection with the use of training of ordinary and attacking packages, respectively. The method that was used to teach an attack on is a combination of an uncontrollable and controlled neural network. In an uncontrolled network, attacks are classified in smaller categories, taking into account their features and using the selforganized map. To manage clusters, a neural network based on back-propagation method used. We use PyBrain as the main framework for designing, developing and learning perceptron data. This framework has a sufficient number of solutions and algorithms for training, designing and testing various types of neural networks. Software architecture is presented using a procedural-object approach. Because there is no need to save intermediate result of the program (after learning entire perceptron is stored in the file), all the progress of learning is stored in the normal files on hard disk.
dc.identifier.citationSystem for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network [Electronic resourse] / Galina Kirichek, Vladyslav Harkusha, Artur Timenko, Nataliia Kulykovska // Computer Science & Software Engineering : proc. of the 2nd Student Workshop (CS&SE@SW 2019), Kryvyi Rih, Ukraine, November 29, 2019 / ed. by : Arnold E. Kiv, Serhiy O. Semerikov, Vladimir N. Soloviev, Andrii M. Striuk. – Electronic text data. – Kryvyi Rih : KDPU. – Vol. 2546. – P. 138-148. – URL: https://ceur-ws.org/Vol-2546/paper09.pdf, free (advanced 24.10.24.).
dc.identifier.orcidhttps://orcid.org/0000-0002-0405-7122
dc.identifier.orcidhttps://orcid.org/0000-0001-5980-4802
dc.identifier.orcidhttps://orcid.org/0000-0002-7871-4543
dc.identifier.orcidhttps://orcid.org/0000-0003-4691-5102
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/82742
dc.language.isoen
dc.publisherКриворізький державний педагогічний університет
dc.subjectneural network
dc.subjectlearning
dc.subjectintrusion
dc.subjectanomalies detection
dc.subjectSOM
dc.titleSystem for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication573d2660-39c3-4721-b51d-7dc4661fb70d
relation.isAuthorOfPublication.latestForDiscovery573d2660-39c3-4721-b51d-7dc4661fb70d

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Ескіз
Назва:
Kirichek_System_for_detecting_2019.pdf
Розмір:
806.16 KB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
11.25 KB
Формат:
Item-specific license agreed upon to submission
Опис: