Аппроксимации Паде и континуализация для одномерной цепочки масс

Ескіз

Дата

2005

ORCID

DOI

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

НТУ "ХПИ"

Анотація

Various continuous models (CM) for 1D discrete media are under consideration. As example the difference-differential equation, describing a system of connected oscillators, is chosen. String-type approximation shows excellent results for low part of frequency spectra, but for forced oscillations the corresponding mistake can be very big. So, the more appropriate CM should be found. We analyze three following models: the intermediate CM are obtained by replacing the difference operator (DO) for the derivative operator of the order 2k, k > 1; the quasi-CM are more accurate approximations of the DO via Pade approximates (PA); the two-point PA give the most precise results. Possibilities of the approach generalization and application are discusse

Опис

Ключові слова

построение континуальных моделей, парадокс Курчанова-Мышкиса-Филимонова, дискретная система, вынужденные колебания

Бібліографічний опис

Андрианов И. В. Аппроксимации Паде и континуализация для одномерной цепочки масс / И. В. Андрианов, А. О. Иванков, М. В. Матяш // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Динамика и прочность машин. – Харьков : НТУ "ХПИ". – 2005. – № 47. – С. 8-16.

Колекції

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced