Розробка гібридних модулів для сонячних установок
Дата
2017
Автори
ORCID
DOI
10.20998/2413-4295.2017.53.24
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
НТУ "ХПІ"
Анотація
У роботі розглядаються особливості підбору теоретичного підґрунтя та математичне моделювання теплових процесів у теплообмінному блоці для комбінованої фотоенергетичної установки. За результатами моделювання проведено вдосконалення та розробка високоефективних теплообмінних блоків. Апробація запропонованих блоків підтвердила їх високу ефективність за рахунок реалізації турбулентного режиму протікання теплоносія. Розроблена принципова електрична схема регульованого мостового резонансного підвищуючого перетворювача з цифровим керуванням, що забезпечує надійність роботи, швидке і точне знаходження точки максимальної потужності і ефективність перетворення до 0,956.
Mathematical modeling of the heat exchange unit main parameters for photoenergy system based on general models with forced circulation of heat transfer fluid. Methodology. To determine the coefficient of heat transfer at a given coolant temperature and surfaces temperature necessary to determine the temperature gradient in the wall of the heat exchanger. Temperature gradients can be determined by solving the equation of energy, which depends on the distribution of the flow rate in the flow. In general, a solution of convective heat transfer fluid to flow along the plane comes to a decision system of differential equations. Results. In work features the selection of theoretical basis and mathematical modeling of thermal processes in the heat exchange unit for combination photoenergy system. As a result of the simulation conducted to improve and develop high efficiency heat exchange unit with microchannels. Testing of the proposed unit proved its high efficiency through the implementation of turbulent flow of coolant with heat transfer coefficient at 18 kW/(m2K). Analytical testing of the heat exchanger allowed showing that heat exchanger unit provides a stable operating temperature at less than 50°C with the coolant flow rate is less than 0.3 m/s. Originality. Novelty of proposed heat exchanger in the optimal design of microchannels to improve the heat transfer coefficient. Novelty of proposed power take-off system solution constitute in implementation of scheme with DC-DC converters, which as it shown by results of carrying out modeling is the most effective. Practical value. The use of this heat exchanger will improve the quality and uniformity of cooling solar panels and reduce energy costs for circulation of fluid. Practical implementation of proposed power take-off system construction will allow reducing losses in connective wires and increasing the efficiency of such system up to 92.5% in wide range of photoenergy modules illumination.
Mathematical modeling of the heat exchange unit main parameters for photoenergy system based on general models with forced circulation of heat transfer fluid. Methodology. To determine the coefficient of heat transfer at a given coolant temperature and surfaces temperature necessary to determine the temperature gradient in the wall of the heat exchanger. Temperature gradients can be determined by solving the equation of energy, which depends on the distribution of the flow rate in the flow. In general, a solution of convective heat transfer fluid to flow along the plane comes to a decision system of differential equations. Results. In work features the selection of theoretical basis and mathematical modeling of thermal processes in the heat exchange unit for combination photoenergy system. As a result of the simulation conducted to improve and develop high efficiency heat exchange unit with microchannels. Testing of the proposed unit proved its high efficiency through the implementation of turbulent flow of coolant with heat transfer coefficient at 18 kW/(m2K). Analytical testing of the heat exchanger allowed showing that heat exchanger unit provides a stable operating temperature at less than 50°C with the coolant flow rate is less than 0.3 m/s. Originality. Novelty of proposed heat exchanger in the optimal design of microchannels to improve the heat transfer coefficient. Novelty of proposed power take-off system solution constitute in implementation of scheme with DC-DC converters, which as it shown by results of carrying out modeling is the most effective. Practical value. The use of this heat exchanger will improve the quality and uniformity of cooling solar panels and reduce energy costs for circulation of fluid. Practical implementation of proposed power take-off system construction will allow reducing losses in connective wires and increasing the efficiency of such system up to 92.5% in wide range of photoenergy modules illumination.
Опис
Ключові слова
блок теплообмінний, теплоносій, батарея сонячна, установка фотоенергетична, перетворювач підвищуючий, heat exchanger unit, coolant, solar panels, combined photo-energy system, step-up converter
Бібліографічний опис
Зайцев Р. В. Розробка гібридних модулів для сонячних установок / Р. В. Зайцев // Вісник Нац. техн. ун-ту "ХПІ" : зб. наук. пр. Сер. : Нові рішення в сучасних технологіях = Bulletin of the National Technical University "KhPI" : coll. works. Ser. : New solutions in modern technologies. – Харків : НТУ "ХПІ", 2017. – № 53 (1274). – С. 165-181.