Применение нейросетевых моделей для прогнозирования интенсивности теплообмена в насадке регенеративного воздухонагревателя стекловаренной печи

Ескіз

Дата

2012

ORCID

DOI

Науковий ступінь

Рівень дисертації

Шифр та назва спеціальності

Рада захисту

Установа захисту

Науковий керівник

Члени комітету

Назва журналу

Номер ISSN

Назва тому

Видавець

НТУ "ХПИ"

Анотація

В статье показана возможность применения нейронных сетей для прогнозирования коэффициентов теплообмена регенеративного воздухонагревателя стекловаренной печи.Проводится сравнение нейронной сети типа многослойный персептрон (MLP) и радиально базисная функция (RBF).
The feasibility of Neural Network have determined for forecast parameters of heat exchangers type of the regenerative air heater for glass furnaces. Neural Network multilayer perception (MLP) and radial basis function have analyzed.

Опис

Ключові слова

энергосбережение, радиально базисная функция, многослойный персептрон

Бібліографічний опис

Кошельник А. В. Применение нейросетевых моделей для прогнозирования интенсивности теплообмена в насадке регенеративного воздухонагревателя стекловаренной печи / А. В. Кошельник, В. М. Кошельник, А. А. Мигура // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Новые решения в современных технологиях. – Харьков : НТУ "ХПИ". – 2012. – № 9. – С. 75-81.

Підтвердження

Рецензія

Додано до

Згадується в