Применение нейросетевых моделей для прогнозирования интенсивности теплообмена в насадке регенеративного воздухонагревателя стекловаренной печи
Дата
2012
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
НТУ "ХПИ"
Анотація
В статье показана возможность применения нейронных сетей для прогнозирования коэффициентов теплообмена регенеративного воздухонагревателя стекловаренной печи.Проводится сравнение нейронной сети типа многослойный персептрон (MLP) и радиально
базисная функция (RBF).
The feasibility of Neural Network have determined for forecast parameters of heat exchangers type of the regenerative air heater for glass furnaces. Neural Network multilayer perception (MLP) and radial basis function have analyzed.
The feasibility of Neural Network have determined for forecast parameters of heat exchangers type of the regenerative air heater for glass furnaces. Neural Network multilayer perception (MLP) and radial basis function have analyzed.
Опис
Ключові слова
энергосбережение, радиально базисная функция, многослойный персептрон
Бібліографічний опис
Кошельник А. В. Применение нейросетевых моделей для прогнозирования интенсивности теплообмена в насадке регенеративного воздухонагревателя стекловаренной печи / А. В. Кошельник, В. М. Кошельник, А. А. Мигура // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Новые решения в современных технологиях. – Харьков : НТУ "ХПИ". – 2012. – № 9. – С. 75-81.