Гибридная иерархическая нейронная сеть для хранения знаний технологического процесса механообработки
Дата
2013
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
НТУ "ХПИ"
Анотація
Разработана архитектура гибридной иерархической нейронной сети (ГИНС), базирующаяся на нейронных сетях (НС) адаптивной резонансной теории АРТ-1 и их модификациях АРТ-1s и АРТ-1h и с использованием НС Хемминга. ГИНС применяется для описания онтологии знаний мультиагентной системы управления машиностроительным предприятием
The architecture of the hybrid hierarchical neural network (HHNN) based on neural networks (NN) adaptive resonance theory ART-1, and their versions of ART-1h and ART-1s with NN Hemming. HHNN is used to describe the ontology knowledge multi-agent system control machinery manufacturer
The architecture of the hybrid hierarchical neural network (HHNN) based on neural networks (NN) adaptive resonance theory ART-1, and their versions of ART-1h and ART-1s with NN Hemming. HHNN is used to describe the ontology knowledge multi-agent system control machinery manufacturer
Опис
Ключові слова
адаптивная резонансная теория, онтология знаний, мультиагентная система, adaptive resonance theory, hybrid hierarchical neural network, ontology of knowledge, multi-agent system
Бібліографічний опис
Дмитриенко В. Д. Гибридная иерархическая нейронная сеть для хранения знаний технологического процесса механообработки / В. Д. Дмитриенко. И. П. Хавина // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Информатика и моделирование. – Харьков : НТУ "ХПИ". – 2013. – № 39. – С. 68-72.