From Geometry, Kinematics and Dynamics of Billiards to the Extended Theory of Skew Collision between Two Rolling Bodies and Methodology of Vibro-Impact Dynamics
Дата
2016
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
NTU "KhPI"
Анотація
Starting from explanation of geometry, kinematics and dynamics of game billiards, and phenomena of impact a
rolling ball into different types of curved surfaces and direct and skew central collision of two rolling, same
dimension, balls we open question of collision of two rolling axial symmetrically bodies with different
dimensions and different forms. Use elementary approach and Petrovic's theory presented in two books
“Elements of mathematical phenomenology” and “Phenomenological mappings”, extended theory of direct
and skew central collision of two rolling, axially symmetric, but different dimensions and forms, bodies is
formulated with all additional and new analytical expressions, theorems , to define all pre- and post- collision
kinetic states. Use these new results complete methodology of vibro-impact system dynamics is formulated and
applied for investigation kinetic parameters and phenomena in vibro-impact systems with successive collisions
between two or a finite number of rolling bodies. Energy jumps in collisions between rolling bodies in vibroimpact
system dynamics are indicated and analytically described in a number of these systems.
Опис
Ключові слова
billiards, theory of rolling body collision, vibro-impact dynamics
Бібліографічний опис
Hedrih (Stevanovic) K. R. From Geometry, Kinematics and Dynamics of Billiards to the Extended Theory of Skew Collision between Two Rolling Bodies and Methodology of Vibro-Impact Dynamics / K. R. Hedrih (Stevanovic) // Nonlinear Dynamics–2016 (ND-KhPI2016) : proceedings of 5th International Conference, dedicated to the 90th anniversary of Academician V. L. Rvachev, September 27-30, 2016 = Нелінійна динаміка–2016 : тези доп. 5-ї Міжнар. конф., 27-30 вересня 2016 р. – Kharkov : NTU "KhPI", 2016. – P. 108-116.